COURSE STRUCTURE M.SC. (MICROBIOLOGY)

EFFECTIVE FROM ACADEMIC SESSION – 2024-25

M. SC. (MICROBIOLOGY) PROGRAM

1st SEMESTER (MBI)

S.No.	New Code	Subject	L-T-P	Credits
1	21MS1MB111	General Microbiology and Bacteriology	3-0-0	3
2	20MS1MA111	Basics of Mathematics and Statistics	2-0-0	2
3	20MS1BT111	Biochemistry	3-0-0	3
4	21MS1MB112	Molecular Biology	3-0-0	3
5	20B1WBI831	Virology	2-0-0	2
6	21MS1MB113	Fungal Biology	2-0-0	2
7	21MS7MB171	General Microbiology and Bacteriology Lab	0-0-4	2
8	21MS7BT171	Biochemistry Lab	0-0-2	1
9	21MS7MB172	Molecular Biology Lab	0-0-4	2
10	21MS7MB173	GLP and Bioinstrumentation Lab	0-0-2	1
		Total	27	21

2nd SEMESTER (MBII)

S.No.	New Code	Subject	L-T-P	Credits
1	18MS1BT211	Immunology and Immunotechnology	3-0-0	3
2	21MS1MB211	Enzymes and Bioprocess Technology	3-0-0	3
3	24MS1BT211	Molecular Diagnostics & Forensic Biology	3-0-0	3
4	18MS1BT313	Recombinant DNA Technology	3-0-0	3
5	20MS1BT213	Bioinformatics	2-0-0	2
6	18MS7BT211	Immunology and Immunotechnology Lab	0-0-2	1
7	21MS7MB271	Enzymes and Bioprocess Technology Lab	0-0-2	1
8	18MS7BI214	Basic Bioinformatics Lab	0-0-2	1
9	18MS7BT373	Recombinant DNA Technology lab	0-0-4	2
10	18MS9BI211	Masters Research Review seminar	0-0-2	1
		Total	26	20

3rd SEMESTER (MBIII)

S.No.	Code	Subject	L-T-P	Credits
1	21MS1MB311	Environmental Microbiology	3-0-0	3
2	24MS1MB311	Microbial Genetics and Physiology	3-0-0	3
3		Elective-I	3-0-0	3
4	21MS9MB311	Master's Dissertation & Thesis Part-I	0-0-16	8
		Total	25	17

4th SEMESTER (MBIV)

S. No.	New Code	Subject	L-T-P	Credits
1	21MS1MB411	Food & Dairy Microbiology MBIV	3-0-0	3
2	21MS1MB412	Plant and Agricultural Microbiology MBIV	3-0-0	3
3		Elective-II	3-0-0	3
4	21MS9MB411	Master's Research Thesis Part-II	0-0-16	8
		Total	25	17

Total Credits: 75

	ELECTIVE - 1				
S. No.	New Code	Subject	L-T-P	Credits	
1	21MS2MB311	IPR, Biosafety and Bioethics	3-0-0	3	
2	21MS2MB312	Biosensors:Principles & Applications	3-0-0	3	
3	23MS2MB311	Microbial Toxicology MBIV	3-0-0	3	
4	21MS2MB314	Protein Engineering	3-0-0	3	

	ELECTIVE - 2					
S. No.	New Code	Subject	L-T-P	Credits		
1	23MS2MB411	Computational Systems Biology	3-0-0	3		
2	21MS2MB412	Experimental models in microbial Research MBIV	3-0-0	3		
3	21MS2MB413	Nano-Biotechnology MBIV	3-0-0	3		
4	21MS2MB414	QC Analysis and Management MBIV	3-0-0	3		

Ist SEMESTER (MBI)

GENERAL	Course Objectives	Students Learning outcomes
MICROBIOLOGY	To acquaint the students with the	Students should be able to:
AND BACTERIOLOGY	development and techniques of microbiology useful in biotechnology industry. Scientific	 Acquire the principles of Microbiology and fundamental concepts related to microbial
COURSE CODE: 21MS1MB111	evaluation of various characteristics of icroorganisms, especially	classification and methods • Scientifically test the hypothesis
L-T-P: 3-0-0	bacteria their metabolism and role in various domains of life.	provided under a given situation involving microbial world and demonstrate practical skills in
CREDITS: 3		basic microbiological techniques including growth and control of bacteria. Analyze and interpret the experiments/pathways relevant to bacterial analysis
		 Designate vital role of the bacteria in the environment and their genetics and association with human beings. Retrieve and use cotemporary information and industrial potential related to microbial world.

Syllabus:

Topics Covered		
Introduction, history and scope of Microbiology. General		
characteristics and composition of Prokaryotes and Eukaryotes.		
Classification of Microorganisms: Haeckel's three kingdom		
concept, Whittaker's five kingdom concept, three domain concept		
of Carl Woese, classification and salient features of bacteria		
according to Berger's Manual of Determinative Bacteriology		
Nomenclature and		
modern methods of Bacterial taxonomy.		
Morphology and ultra-structure of bacteria: size, shape, and		
arrangement of bacteria, ultra-structure of bacterial cell wall of		
eubacteria and archeabacteria. Protoplast and spheroplast formation		
and L-form. Components external to cell wall: Structure and		
function of flagella, fimbriae and pilli, capsule- types, composition		
and function, slime layers, S-layers. Prokaryotic cell membrane		
and		
cytoplasmic matrix – cell membrane structure and function		
of bacteria and archaebacteria, mesosomes, ribosomes, cytoplasmic		
inclusion bodies (polyhydroxy butyrate, polyphosphate granules,		
oil droplets, cyanophycean granules) and nucleoid. Bacterial		
response to external stimulus and bacterial endospores: Chemotaxis		
and phototaxis structure, formation and germination of bacterial		

	endospore.
Unit 3: Analytic techniques and control measures in bacteriology 7 lectures	Staining methods: fixation, types of dyes, simple staining, differential staining - Gram and Acid-fast staining, staining of specific structures capsule, flagella and spore staining Control of microorganisms: Microbial death curve, concept of bio-burden, thermal death time and decimal reduction time. Factors influencing the effectiveness of antimicrobial agents. Control of bacteria by physical agents: heat - moist and dry, filtration and radiation. Chemical control of microorganisms: Halogens, phenol and other phenolic compounds, heavy metals, alcohols, ethylene oxide and aldehydes
Unit 4: Bacterial growth and kinetics 7 lectures	Bacterial nutrition: Basic nutritional requirements, growth factors, nutritional categories, physical requirements of bacterial growth. Bacteriological media: types (complex, synthetic, differential, enrichment and selective media) and their uses, culture characteristics of bacteria on different media. Cultivation of bacteria: aerobic and anaerobic culture, pure culture techniques, shaker and still culture, maintenance and preservation of microbial culture. Bacterial growth: growth kinetics, growth curve. Batch, continuous and synchronous culture. Measurement of growth and influence of environmental factors affecting growth.
Unit 5: Bacterial reproduction and genetics 7 lectures	General concept of Prokaryotic and Eukaryotic genome. Genome of <i>E. coli</i> . Genetic recombination and transformation. Transduction: generalized and specialized transduction, phage conversion. Plasmid: types and their significance. Conjugation and chromosomal mobilization. <i>E. coli</i> as model prokaryotes.
Unit 6: Bacterial epidemiology and diseases 5 lectures	Human diseases caused by bacteria; The epidemiology, pathogenesis, antigenic characteristics and diagnosis of diseases
Unit 7: Microbial Ecology and Industrial applications 6 lectures	Thermophiles, Alkaliphiles, Acidophiles, Halophiles, Psychrophiles, Radiophiles, Fermented foods and beverages, Biofertilizers, Biopesticides, Biofuels and Bioenergy

- 1. Prescott, Harley and Klein: Microbiology, 6th Edition, McGraw Hill 2005.
- 2. Pelczar, Chan and Krieg: Microbiology by; Tata McGraw Hill.
- 3. Madigan, M.T., Martinko, J.M., Parker, J: Brock Biology of Microorganisms. 10th Edition.: Publisher: Prentice Hall 2003
- 4. Gerard J. Tortura, Berdell R. Funke, and Christine L: Microbiology An Introduction: Case. 8th Ed., Pearson/Benjamin Cummings, 2004.
- 5. Nester: Microbiology Study Guide McGraw Hill.
- 6. Black: Microbiology: Principles and Applications Prentice Hall

BASICS OF	Course objective	Students Learning Outcomes
MATHEMATICS		On completion of this course,
AND STATISTICS	The objective of this course is to	students should be able to:
	give conceptual exposure of	 Gain broad understanding in
COURSE CODE:	essential contents of mathematics	mathematics and statistics;
20MS1MA111	and statistics to students for	 Recognize importance and value
	application in biological sciences	of mathematical and statistical
L-T-P: 2-0-0		thinking, training, and approach
		to problem solving, on a diverse
CREDITS 2		variety of disciplines.

Unit I Algebra 8	Linear equations, functions: slopes-intercepts, forms of two-variable		
lectures	linear equations; constructing linear models in biological systems;		
	quadratic equations (solving, graphing, features of, interpreting		
	quadratic models etc.), introduction to polynomials, graphs of binomials		
	and polynomials; Symmetry of polynomial functions, basics		
	trigonometric functions, Pythagorean theory, graphing and constructing		
	sinusoidal functions, imaginary numbers, complex numbers, adding-		
	subtracting-multiplying complex numbers, basics of vectors,		
	introduction to matrices.		
Unit II Calculus 6	Differential calculus (limits, derivatives), integral calculus (integrals,		
lectures	sequences and series <i>etc.</i>).		
Unit III	Population dynamics; oscillations, circadian rhythms, developmental		
Mathematical	patterns, symmetry in biological systems, fractal geometries, size-limits		
models in biology 6	& scaling in biology, modelling chemical reaction networks and		
lectures	metabolic networks.		
Unit IV Statistics 8	Probability: counting, conditional probability, discrete and continuous		
lectures	random variables; Error propagation; Populations and samples,		
	expectation, parametric tests of statistical significance, nonparametric		
	hypothesis tests, linear regression, correlation & causality, analysis of		
	variance, factorial experiment design.		

- 1. Stroud, K. A., & Booth, D. J. (2009). *Foundation Mathematics*. New York, NY: Palgrave Macmillan.
- 2. Aitken, M., Broadhursts, B., & Haldky, S. (2009) *Mathematics for Biological Scientists*. Garland Science.
- 3. Billingsley, P. (1986). Probability and Measure. New York: Wiley.
- 4. Rosner, B. (2000). Fundamentals of Biostatistics. Boston, MA: Duxbury Press.
- 5. Daniel, W. W. (1987). *Biostatistics, a Foundation for Analysis in the Health Sciences*. New York: Wiley.

BIOCHEMISTRY	Course objective Following are	Students Learning outcomes
	the objectives of Biochemistry course.	After learning and completion of
COURSE CODE:	 To understand the basic biochemical 	Biochemistry course, student will be
20MS1BT111	processes and their principles those	able to:
	govern complex biological systems.	■ Define the structural features of
L-T-P: 3-0-0	■ To understand the structure,	basic biomolecules
	functions of essential biomolecules	■ Describe the functionality of
CREDITS 3	and their interactions with each other.	biomolecules in relation to their
	• To understand the various metabolic	usage for steady state of an
	and energy generation processes	organism.
	which areessential for	■ Get complete understanding of
	sustainability of life.	metabolic processes and their
		integration with each other.

Unit/ Module	Description		
Unit I:	Chemical basis of life: Miller-Urey experiment, abiotic formation of		
Origin of Life	amino acid oligomers, composition of living matter; Water and its		
(Biochemical basis) 4	essential role for life, pH and its regulation in relation to microorganisms		
lectures			
Unit II: Biomolecules in Microbial world 8 lectures	Carbohydrates: Classification, basic chemical structures and their role in microbial life. Lipids: Classification, structure and function of major lipid subclasses in		
	microbe's especial consideration bacterial membranes. Proteins: Amino acids: Classification, Properties, Protein Structure: primary, secondary, tertiary and quaternary structure, basics of enzymes and their catalysis. Nucleotides: Nucleotides, Nucleosides structures, Different confirmations of DNA		
Unit III: Microbial	Microbial metabolic diversity and classification based on nutritional types.		
nutrition and basic	Transport Mechanisms across membrane: Diffusion, facilitated Diffusion,		
biochemical process	Active and passive transport.		
for growth			
4 lectures			
Unit IV: Central	Bacterial aerobic respiration, Embden-Meyerhof pathway, Entner-		
Metabolic	Doudoroff pathway, Pentose phosphate pathway, Tricarboxylic acid cycle,		
Pathways and	components of electron transport chain, chemiosmotic theory, oxidative		
Carbohydrate	and substrate level phosphorylation, , Utilization of sugars other than		
metabolism	glucose and complex polysaccharides. Bacterial anaerobic respiration and		
10 lectures	fermentation		
Unit IV: Metabolism	Biosynthesis and degradation of fatty acids and phospholipids,		
of lipids and	lipopolysaccharide biosynthesis		
hydrocarbons:			
6 lectures			
Unit V: Protein and	Metabolism of amino acids: Amino acid biosynthesis and utilization,		
amino-acid metabolism	lysine and glutamine overproduction, polyamine biosynthesis and		
6 lectures	regulation.		
Unit VI: Metabolism	Purine and pyrimidine biosynthesis, regulation of purine and pyrimidine		
of nucleotides	biosynthesis, inhibitors of nucleotide synthesis.		
4 lectures			

- 1. J M Berg, L Stryer, J Tymoczko, G Gatto, "Biochemistry", 9th Ed., (2019) W H Freeman
- 2. D L Nelson and MM Cox, "Lehninger Principles of Biochemistry", 7th Ed. (2017) WH Freeman
- 3. J Willey, L Sherwood, C J Woolverton "Prescott's Microbiology", 10th Ed., (2016) Mc GRaW-Hill

MOLECULAR	Course objective	Students Learning outcomes
BIOLOGY COURSE CODE:	The objective of this course is to equip students with detailed knowledge of molecular biology,	On successful completion of this course, student will be able to:
21MS1MB112 L-T-P: 3-0-0	applications of molecular biology, and enhance their abilities to understand modern research and	 Understand physical and chemical properties nucleic acids
CREDITS 3	developments in the life science sector.	■ Develop deep understanding about DNA replication, damage and repair
		 Understand the processes of transcription and translation at molecular level
		■ Will recognize the different mechanism of gene regulation in microbial systems
		• Will get apprised with different molecular biology techniques and their applications in modem research and life science sector

Unit I	Introduction to molecular Biology; Chemical and physical properties of Nucleic acids
Chemical and	
Physical Properties	
of Nucleic acids	
3 lectures	
Unit II	DNA replication, Nature of replication, Enzymes and proteins
	involved, Replication Fork and priming, leading and lagging strand,
DNA replication	Process of Replication: initiation elongation, termination, specific
Damage and repair	features of replication in Prokaryotes, fidelity of replication, inhibitors
8 lectures	of replications and their applications, DNA damage repair and recombination: DNA damage, DNA Mismatch Repair, Double Strand Break Repair, Homologue and site-specific recombination,
Unit III	Transcription: Transcription machinery of prokaryotes, various
RNA synthesis and processing 8 lectures	transcription enzymes and cofactors, initiation, elongation and termination, sigma factors, post-transcriptional processes: RNA processing, splicing, capping and polyadenylation, rRNA and tRNA processing, RNAi and miRNAs, post-transcriptional gene regulation.
Unit IV	Translation: Mechanisms of translation in prokaryotes, initiation
Protein synthesis and processing	complex, ribosomes and tRNA, factors, aminoacylation of tRNA, tRNA-identity, aminoacyl tRNA synthetase, and translational proof-reading, translational elongation and termination, inhibitors of
8 lectures	translation

Unit V Gene Regulation	Control of gene expression at transcription and translation level regulating the expression of phages, viruses, prokaryotic and	
expression 8 Lectures		
Unit VI Molecular Biology Techniques	Labelling of DNA: nick translation, random priming, radioactive and non-radioactive probes, Hybridization techniques: northern, southern, fluorescence in situ hybridization, Polymerase chain reaction and its variations	
7 Lectures		

Suggested Text Book(s):

- 1. Lehninger "Principles of Biochemistry".
- 2. Principles of Genetics D. Peter Snustad, Michael J. Simmons

Suggested Reference Book(s):

- 1. Lewin's GENES XI
- 2. Lodish H, Berk A, Zipursky LS, Matsudaira P, Baltimore D, Darnell J (2000). Molecular Cell Biology.
- 3. W. H. Freeman and Company
- 4. Molecular Biology of the Gene by J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M. Levin, R. Losick, 6th edition, Benjamin Cummings, San Francisco, USA, 2007.
- 5. Molecular Biology by R.F. Weaver, 4th edition, McGraw Hill. New York. USA, 2007.
- 6. Molecular Biology of the Cell by B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, 5th edition, Garland Science, New York and London, 2007. 5.

VIROLOGY	Course Objectives	Students Learning outcomes
COURSE CODE: 20B1WB831 L-T-P: 2-0-0 CREDITS: 2	To acquaint the students with the development and techniques of virology useful in biotechnology industry. Scientific evaluation of various characteristics of viruses, their metabolism and role in various domains of life.	fundamental concepts related virology

Unit 1 Introduction and classification of viruses 4 Lectures	Brief outline on discovery and origin of viruses. General properties of viruses, Classification and general properties of major families of viruses
Unit 2 Structure and morphology of viruses 4 Lectures	Morphology and ultra-structure of viruses, capsid and their arrangements, types of envelopes and their composition, measurement of viruses. Viral genome; their types and structure, viral related agents-viroids and prions.
Unit 3 Cultivation and analytical techniques in virology 7 Lectures	Cultivation of viruses in embryonated eggs, experimental animals, and cell cultures; primary and secondary cell cultures; suspension cell cultures and monolayer cell cultures; cell strains, cell lines and transgenic systems; serological methods – haemagglutination and HAI; complement fixation; immunofluorescence methods, ELISA and Radioimmuno assays; assay of viruses – physical and chemical methods (protein, nucleic acid, radioactivity tracers, electron microscopy) – Infectivity assay (plaque method, end point method) – Infectivity assay of plant viruses.
Unit 4 Viral replication; uncoating, assembly and release 6 Lectures	Bacteriophage: classification, morphology and ultra structure. One step growth curve (latent period, eclipse period, and burst of size.) Life cycle: lytic and lysogenic life cycle of bacteriophages. Brief account of M13, Mu, T4, Ø x174 and lambda phage. Uncoating, assembly and release

Unit 5	Classification and nomenclature; effects of viruses on plants;		
Plant viruses: Infection	appearance of plants; histology, physiology and cytology of plants;		
and diseases of plants 7	lants 7 common virus diseases of plants; paddy, cotton, tomato ar		
Lectures	sugarcane; viruses of cyanobacteria, algae, fungi, life cycle; type		
	species of plant viruses like TMV, Cauliflower Mosaic Virus and		
	Potato Virus X; transmission of plant viruses with vectors (insects,		
	nematodes, fungi) and without vectors (contact, seed and pollens);		
	diagnostic techniques in seeds; seed stocks and diseased plants (seed		
	morphology, seedling symptomatology, indicator plants, serological		
	methods, histochemical tests and fluorescent microscopy);		
	prevention of crop loss due to virus infection – virus- free planting		
	material; vector control		
Unit 6	Classification and nomenclature of animal human viruses;		
	epidemiology, lifecycle, pathogenicity, diagnosis, prevention and		
Animal viruses:	treatment of RNA virurses Picorna, Ortho myxo, Paramyxo, Toga		
infections and diagnosis	and other arthropod viruses, Rhabdo, Rota, HIV and other Oncogenic		
7 Lectures	viruses; DNA viruses; Pox, Herpes, Adeno, SV 40; Hepatitis viruses.		
Unit 7	Viral vaccines (conventional vaccines, genetic recombinant vaccines		
	used in national immunization programmes with examples, newer		
Viral vaccines and	generation vaccines including DNA vaccines with examples)		
antiviral agents	interferons and antiviral drugs.		
7 Lectures	_		

- 1. Reference Books 1. Virology; Renato Dulbecco and Harold S. Ginsberg
- 2. An Introduction to viruses, S. B. Biswas and Amita Biswas. Forth edition, Vikas Publishing House PVT LTD New Delhi.

FUNGAL BIOLOGY	Course objective	Students Learning Outcomes
COURSE CODE: 21MS1MB113 L-T-P: 2-0-0 CREDITS 2	The objectives of this course are to introduce field of field biology with special emphasis on fungal diversity, morphology, physiology and	Students hould be able to: Identify major categories of fungi and analyze their classification, diversity, and ubiquity Identify major categories of fungi, demonstrate and evaluate interactions between hosts (plant/human) and environment.
	plant- fungal interactions.	(4

Unit I	Introduction to the course; characteristics of fungi		
Introduction and	Fungal life cycles, ecological role of fungi, and human-fungus		
classifications	interactions, Model organisms and genetics		
3 lectures	,		
Unit II	General overview		
Division or Phylum	Class Zygomycetes (Order Mucorales)		
Zygomycota	Fermented Foods etc		
04 lectures			
Unit III	Cultivation of mushrooms & other fungi Spore release and dispersal		
Division or Phylum	Poisonous and hallucinogenic mushrooms; Mycotoxins in the grain and		
Basidiomycota	other food products.		
(General	Class Urediniomycetes & Ustomycetes (Rusts and Smuts)		
overview) Class			
Basidiomycetes			
07lectures			
Unit IV	General overview		
Division or Phylum	Ergot & ergotism; Mycotoxins in Food		
Ascomycota	Alcoholic fermentations, cheeses, and fungal metabolites Physiology of		
	Fungal Growth		
08 lectures	Bioremediation		
	Yeast-Model organism and expression system		
Unit V	Form Division or Form Phylum Deuteromycota: (General		
IMPERFECT	overview)		
FUNGI	Symbiotic and Parasitic relations Allergies and Fungal Diseases of		
	Animals & Humans Slime molds Zoosporic Fungi: Chytrids,		
FUNGUS-LIKE	Oomycetes, and others		
ORGANISMS			
7 lectures			

- 1. Introduction to Fungi. 3rd Edition (2007) Webster & Webster. Cambridge University Press
- 2. Bessette, A. E., Bessette, A. F., & Lewis, D. P. (2019). Mushrooms of the Gulf Coast States: A Field Guide to Texas, Louisiana, Mississippi, Alabama, and Florida. University of Texas Press.
- 3. https://fungalbiolbiotech.biomedcentral.com/articles
- 4. https://www.frontiersin.org/research-topics/9823/innovative-approaches-in-diagnosis-of-emergingre-emerging-infectious-diseases
- 5. https://www.frontiersin.org/research-topics/11600/fungal-genetics-in-plant-biomass-conversion
- 6. https://www.frontiersin.org/research-topics/13305/plant-pathogenic-fungi-molecular-systematics-genomics-and-evolution

GENERAL	Course Objectives	Students Learning
MICROBIOLOGY AND	The objective of this	outcomes
BACTERIOLOGY LAB	laboratory course is to provide	Students should be able to:
	practical skills on basic	■ Isolate, characterize and
COURSE CODE:	microbiological techniques.	identify
21MS7MB171		■Common bacterial
		organisms
L-T-P: 0-0-4		■ Determine bacterial load of
		different samples
CREDITS: 2		■Perform antimicrobial
		sensitivity tests
		■ Preserve bacterial cultures.

Syllabus:

- 1. To study construction and working of compound microscope and study of microbiology lab instruments
- 2. Sterilization, disinfection and safety in microbiological laboratory.
- 3. Preparation of media for cultivation of bacteria.
- 4. Isolation of bacteria in pure culture by streak plate method.
- 5. Pour plate technique and study of colony and growth characteristics of some common bacteria
- 6. Preparation of bacterial smear and Gram's staining.
- 7. Acid-fast staining for study and differentiation of acid-fast bacteria.
- 8. Enumeration of bacteria: serial dilution and standard plate count.
- 9. Antimicrobial sensitivity test and demonstration of drug resistance
- 10. Determination of Minimum Inhibitory Concentration (MIC)
- 11. Maintenance of stock cultures: slants, stabs and glycerol stock cultures
- 12. Determination of phenol co-efficient of antimicrobial agents.
- 13. Isolation and identification of bacteria from soil/water samples.
- 14. Study of bacterial growth kinetics.

- 1. Cappuccino, J. G., & Welsh, C. (2016). *Microbiology: a Laboratory Manual*. Benjamin-Cummings Publishing Company.
- 2. Collins, C. H., Lyne, P. M., Grange, J. M., & Falkinham III, J. (2004). *Collins and Lyne's Microbiological Methods* (8th ed.). Arnolds.
- 3. Benson, Harold J. (2007) *Microbiological Applications : Laboratory Manual in General Microbiology*, McGraw-Hill Higher Education
- 4. Tille, P. M., & Forbes, B. A. Bailey & Scott's Diagnostic Microbiology.

BIOCHEMISTRY LAB	Course Objectives	Students Learning outcomes
COURSE CODE: 21MS7BT171 L-T-P: 0-0-2 CREDITS: 1	The Objective of the course is To provide training and skills for the handling and analysis of biomolecules. To acquaint the students with laboratory techniques related to detection and estimation of primary biomolecules which are essential in an organism for life sustainability.	After completion of Biochemistry lab, student will be able To understand the basic biochemistry laboratory practices and independently handle different instruments utilized in a biochemistry lab. To identify and quantify accurately different biochemical identities in a

Syllabus:

- 1. Basic guidelines for safety measures to avoid hazards in biochemistry lab and preparing various stock solutions and working solutions.
- 2. To prepare buffer solution of varying pH by using Henderson-Hasselbalch equation and pH meter.
- 3. To identify and classify different sugars on the basis of qualitative methods.
- 4. To determine concentration of carbohydrates by Anthrone method: a quantitative approach.
- 5. To isolate the proteins from bacterial culture using differential centrifugation and their detection using qualitative methods.
- 6. To estimate concentration of proteins with Bradford's method.
- 7. To estimate concentration of proteins by Lowry's method.
- 8. To separate different bacterial proteins using SDS PAGE technique.
- 9. To study the enzyme activity (amylase enzyme) using DNS method.
- 10. To determine an unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer and validating the Beer- Lambert's Law.
- 11. To determine presence of lipid in a given sample through qualitative method.
- 12. To Estimate the Saponification value of oils.
- 13. To quantify the concentration of DNA using spectrophotometer.
- 14. To detect the presence of microorganism in milk using specific biochemical tests.

- 1) Irwin H. Segel "Biochemical Calculations", 2ed (2010) Wiley
- 2) Andreas Hofmann & Samuel Clokie Wilson and Walker's "Principles and Techniques of Biochemistry and Molecular Biology" (2018) Cambridge university press

MOLECULAR	Course objective	Students Learning outcomes
BIOLOGY LAB COURSE CODE: 21MS7MB172 L-T-P: 0-0-4 CREDITS 2	The objective of this course is to familiarize the students with some basic and advanced techniques of molecular biology.	On successful completion of this course, student will be able to: Understand the fundamentals of procedure of isolation, quantification and visualization of various biomolecules from different cellular or tissue.
		 Interpret and conclude experimental results involving molecular biology

Syllabus

- 1. Introduction to molecular biology lab and facilities, Calculations of molarity and normality of the solutions
- 2. Preparation of Buffer Stocks (TBE, TAE, TE) and Buffers for gel electrophoresis
- 3. To perform agarose gel electrophoresis of DNA samples
- 4. Estimation of DNA quantity and quality by gel electrophoresis
- 5. To isolate genomic DNA from E. coli (DH5- α) using heat boiling method
- 6. To isolate *E. coli* (DH5-α) genomic DNA using phenol chloroform
- 7. Isolation of genomic DNA from human blood sample
- 8. Preparation of reagents and isolation plant genomic DNA using CTAB method
- 9. Quantification of DNA concentration and purity by spectrometric/nanodrop method
- 10. Introduction to Polymerase Chain Reaction and to amplify gene using genomic DNA of *E. coli*.
- 11. To separate serum and plasma proteins from human blood
- 12. To visualize human serum and plasma proteins using SDS-PAGE technique
- 13. To isolate RNA from bacterial cell and its quantification

Recommended Textbooks and References:

1. Green, M. R., & Sambrook, J. (2012). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

GOOD LABORA	TORY
PRACTICE AND	
BIOINSTRUME	NTATION
LAB	

COURSE CODE: 21MS7MB173

L-T-P: 0-0-2

CREDITS: 1

Course Objectives

The Objective of the course is to provide training of good laboratory practices and various instrumentations used in Biotech/Pharmaceutical industry. This course covers practical aspects of modern instrumentation used for analysis in biological research

Students Learning outcomes

Students should be able to:

- To understand basic guidelines, importance of good laboratory practice, documentation and conduct of non-clinical studies
- To Understand basic principles and applications of bio-instruments
- To develop necessary critical thinking skills in order to do data analysis and interpretation in relation to the research process

Syllabus:

- 1. To introduce good lab practices, Lab safety and Bio hazard
- 2. Introduction to the OECD Principles of good laboratory practice. Overview and Purpose of GLP
- 3. Good Documentation practice and maintenance of lab note book
- 4. Quality control & Quality Assurance in laboratory
- 5. To determine an unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer and validating the Beer- Lambert's Law.
- 6. Instrumentation and working principles of infra red (IR) spectroscopy using salt plates.
- 7. Chromatography (Ion exchange, Molecular Sieve, Affinity, Thin layer, GC)
- 8. Instrumentation and working principles of HPLC
- 9. Instrumentation and working principles Electron Microscopy
- 10. Principle and application Gel electrophoresis
- 11. Principle and application of lypholization
- 12. Instrumentation and working principles of mass spectroscopy
- 13. Determination of molar mass of simple compounds using mass spectroscopy.
- 14. MALDI-TOF instrumentation and analysis of serum proteins
- 15. To study the effect of chemical denaturants on protein stability using CD spectroscopy.
- 16. Principle and applications of Centrifugation and ultracentrifugation

- 1. Milton. A. Anderson (2002) GLP Essentials: a Concise Guide to Good Laboratory Practices
- 2. Sandy Weinberg (2007) Good Laboratory Practice Regulations
- 3. Nally, J. D. 6th edition. CRC Press (2006) GMP for Pharmaceuticals
- 4. <u>Andreas Hofmann & Samuel Clokie</u> Cambridge university press (2018) Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology

IInd SEMESTER (MBII)

IMMUNOLOGY AND	Course objective	Students Learning outcomes
IMMUNOTECHNOLOGY	g .	g
	The objectives of this course are to learn about structural features of components of immune system as well as their function. The major emphasis of this course will be on development of immune system and mechanisms by which our body elicits immune response. This will be imperative for	On successful completion of this course, student will be able to: • Evaluate usefulness of immunology in different pharmaceutical companies; • Identify proper research lab working in area of their own interests;
	students as it will help them to predict about nature of immune response that develops against bacterial, viral or parasitic infection, and prove it by designing new experiments.	figure out kind of immune responses in the setting of

Unit I	Historical perspectives, Cells and organs of the immune system, Types	
Immunology	of immunity (innate and acquired immunity), Components of innate and	
fundamental	acquired immunity, Antigens: mitogens Immunogenicity, antigenicity,	
Concepts:	epitopes, haptens.	
6 lectures		
Unit II	Immunoglobulins - basic structure, classes & subclasses of	
Immune responses	immunoglobulins, antigenic determinants, B-cell receptor, B cell	
generated by B and	maturation, activation and differentiation; generation of antibody	
T lymphocytes	diversity; T-cell maturation, activation and differentiation and T-cell	
8 lectures	receptors; functional T Cell subsets; cell-mediated immune responses,	
	ADCC; cytokines: properties, receptors and therapeutic uses; antigen	
	processing and presentation- endogenous antigens, exogenous antigens,	
	non-peptide bacterial antigens and super-antigens; cell-cell co-operation,	
	Hapten-carrier system,	
Unit III	Precipitation, agglutination and complement mediated immune	
Antigen-antibody	reactions; advanced immunological techniques: RIA, ELISA, Western	
interactions	blotting, ELISPOT assay, immunofluorescence microscopy, flow	
5 lectures	cytometry and FACS.	
Unit IV	A short history of vaccination, Active and passive immunization; live,	
Vaccinology	killed, attenuated, subunit vaccines; vaccine technology: role and	
7 lectures	properties of adjuvants, recombinant DNA and protein based vaccines,	
	plant-based vaccines, reverse vaccinology; peptide vaccines, conjugate	
	vaccines; antibody genes and antibody engineering:chimeric, generation	
	of monoclonal antibodies, hybrid monoclonal antibodies; catalytic	
	antibodies and generation of immunoglobulin	

Unit V	Autoimmunity: Types of autoimmune diseases (organ specific and	
Clinical	systemic), Mechanisms of autoimmunity, Hypersensitivity reactions:	
immunology	Type I, II, II and IV, hypersensitivity reactions, treatment of autoimmune	
8 Lectures	diseases; transplantation: immunological basis of graft rejection; clinical	
	transplantation and immunosuppressive therapy	
Unit VI		
Immune response to	Viral, bacterial, protozoan diseases, parasitic infections,	
infectious diseases	Immunodeficiency diseases: Primary and secondary immunodeficiency	
and tumor	diseases, Acquired immunodeficiency syndrome (AIDS)	
immunity		
4 Lectures		
Unit VII	Major histocompatibility complex genes and their role in autoimmune	
Immunogenetics	and infectious diseases, HLA typing. General organization and	
4 Lectures	inheritance of MHC, structure of MHC class I and II molecules, peptide	
	binding by MHC molecules, MHC and susceptibility to disease.	

- 1. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2006). Kuby Immunology. New York: W.H. Freeman.
- 2. Brostoff, J., Seaddin, J. K., Male, D., & Roitt, I. M. (2002). Clinical Immunology. London: Gower Medical Pub.
- 3. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's Immunobiology. New York: Garland Science.
- 4. Paul, W. E. (2012). Fundamental Immunology. New York: Raven Press.
- 5. Goding, J. W. (1996). Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology, Biochemistry, and Immunology. London: Academic Press.
- 6. Parham, P. (2005). The Immune System. New York: Garland Science.

ENZYMES &	Course objective	Students Learning outcomes
BIOPROCESS	The objectives of this course are	On successful completion of this
TECHNOLOGY	to develop an understanding in	course, student will be able to:
	students about the fundamental	• Describe the fundamentals and
COURSE CODE:	and important concepts of	importance of enzymes and its
21MS1MB211	enzymes and bioprocess	kinetics
L-T-P: 3-0-0	technology and its related applications, thus preparing	• Appreciate relevance of microorganisms from industrial
CREDITS 3	them to meet the challenges of the new and emerging areas of biotechnology industry.	

Unit I Enzymology 5 lectures	Introduction to Enzymes; Classification; General properties; Kinetics; Reversible and irreversible inhibition; Coenzyme and cofactors; Isoenzymes
Unit II Basic Principles of Bioprocess Technology 4 lectures	Introduction to fermentation; Isolation, screening, preservation and maintenance of industrially important microbes; Strain improvement
Unit III Bioreactor Design and Analysis 10 lectures	Microbial growth and Death Kinetics; Factors affecting microbial growth; Batch and Continuous Fermentation; Modifying Batch and continuous Fermentation: Fed-batch, Chemostat with recycle, multistage chemostat systems; Cell and enzyme immobilization Criteria for ideal fermenter; Configuration; Bioreactor designsmechanically agitated; Pneumatic and hydrodynamic fermenters.
Unit IV Upstream processing 6 lectures	Whole Cell Immobilized Fermenters; Stability of microbial reactors Fermentation media; Media formulation; Sterilization; Aeration, agitation and heat transfer in bioprocess; Measurement and control of bioprocess parameters; Scale up and scale down process

Unit V	Separation of insolubles: Filtration, Centrifugation, Sedimentation;	
Downstream	Cell disruption; Separation of solubles: Liquid-liquid extraction;	
processing and	Precipitation; chromatographic techniques; Reverse osmosis and ultra	
Product Recovery	and micro filtration; Final purification: Drying; Crystallization;	
7 Lectures	Storage and packaging; Effluent Treatment and its disposal	
Unit VI	Mechanism of enzyme function and reactions in process techniques;	
Applications of	enzymatic bioconversions <i>e.g.</i> starch and sugar conversion processes;	
Enzyme technology	high-fructose corn syrup; hydrolyzed protein etc. and their downstream	
in food processing 4	processing; baking by amylases, deoxygenation and desugaring by	
Lectures	glucoses oxidase, beer mashing and chill proofing; cheese making by	
	proteases and various other enzyme catalytic actions food processing	
Unit VII	Industrial Production of Bioproducts: Ethanol, Acids (Citric, acetic,	
Applications of	Lactic and gluconic), Antibiotics (Penicillin, streptomycin,	
microbial	tetracycline), Semi-synthetic antibiotics, Ethanol, Single Cell Protein	
technology in		
bioproduct		
production		
6 Lectures		

- 1. Berg, J.M., Tymoczko, J.L. and Stryer, L., "*Biochemistry*", 5th ed., W.H. Freeman and Company, New York, 2002
- 2. Nelson D.L., Cox M.M., "Lehninger Principles of Biochemistry", 5th ed., W.H. Freeman and Company, New York, 2008.
- 3. Pauline M. Doran, "Bioprocess Engineering Principles", 8th ed., Academic press, New York, 2003.
- 4. M.L. Shuler and F. Kargi, "Bioprocess Engineering--basic Concepts", 2nd Edn. Prentice-hall Of India Pvt Ltd (2008).
- 5. Peter F. Stanbury, Stephen J. Hall & A. Whitaker, "Principles of Fermentation Technology", Â Elsevier India Pvt Ltd. (2007).
- 6. Jackson AT., Bioprocess Engineering in Biotechnology, Prentice Hall, Engelwood Cliffs, 1991.
- 7. Illanes A, "Enzyme Biocatalysis", Springer Science, 2008.
- 8. Klaas Van't Riet, Johannes Tramper, "Basic Bioreactor Design", 2nd ed., Marcel Dekker, Inc., New York, 1991.
- 9. JE Bailey and DF Ollis, "Biochemical Engineering Fundamentals", 2nd ed., McGraw-Hill Book Company, New York, 1986.
- 10. Mansi EMTEL, Bryle CFA. Fermentation Microbiology and Biotechnology, 2nd Edition, Taylor & Francis Ltd, UK, 2007.
- 11. Abhilasha S. Mathuriya, "Industrial Biochnology" 1st ed., Ane Books Pvt. Ltd., New Delhi, 2009.

MICROBIAL	Course objective	Students Learning Outcomes
GENETICS AND PHYSIOLOGY	The objectives of this course are to take students through	On successful completion of this course, student will be able to:
COURSE CODE: 24MS1MB311	physiology covering prokaryotic/phage	 Describe fundamental molecular principles of genetics.
L-T-P: 3-0-0 CREDITS: 3	genetics to yeast and higher eukaryotic/ archea domains. Students will be exposed to	 Describe the basics of genetic mapping.
CREDITS: 3	concepts of complex traits encompassing, genetics and microbial metabolic regulation.	 Understand the principles microbial genetic regulation. Various tools of the culturing and growth measurement of microorganisms. Acquaint with mechanisms of survival of various microorganisms.

Unit	Topics Covered
Unit I:	Concept of a gene in pre-DNA era; mapping of genes in bacterial
Genetics of	and phage chromosomes by classical genetic crosses; fine
bacteria,	structure analysis of a gene; genetic complementation and other
bacteriophages,	genetic crosses using phenotypic markers; Yeast mating type
and Yeast	switch; dominant and recessive genes/mutations, complementation
10 lectures	groups
Unit II:	Mutator genes, screening of mutations based on phenotypes and
Mutants and Mutation	mapping the same, Loss of function mutants: null, leaky, and
7 lectures	conditional mutations. Gain of function mutants, Are mutations
	random events or adaptive? Mutation rates, probability, and target
	theory, Uses of mutants
Unit III:	Mechanisms of genetic exchange: Genotype vs phenotype, Genetic
	exchange in nature, Genetic exchange in the lab, Barriers to genetic
Genetic Exchange and	exchange: host restriction and modification, Plasmids, Properties of
restrictions	some bacterial plasmids, Plasmid replication, Phage, General
5 lectures	properties of phages, Lytic growth, Host specificity, Lysogenic
	phage, Phage Lambda

Unit IV: Microbial growth and metabolic regulations 10 lectures	Introduction, thermodynamics principles/ Eh-pH diagrams, Mitchell hypothesis and energetic, The Monod and Pirt models for microbial growth, Chemostats as an indispensible tool for physiological studies, Diversity of metabolism and selective enrichments, Mixed Cultures in the chemostat/selection, Metabolic genetic regulation, Regulatory systems during aerobic- anaerobic shifts.
Unit V: Growth and cell physiology of extremophilic microorganisms Lectures 10	Growth curve and diauxic growth curve and calculation of generation time and classification of microorganisms based upon nutrient and water activity. Determination of cell count by various methods. Cellular physiology of extremophilic microorganisms. Extremophilic physiological adaptations Methanotrophs, Thermophiles, Acidophiles, Sulfur reduction and SRBs, Mechanisms of survivals of various extremophiles.

- 1. Hartl, D. L., & Jones, E. W. Genetics: Principles and Analysis. Sudbury, MA: Jones and Bartlett.
- 2. Pierce, B. A. Genetics: a Conceptual Approach. New York: W.H. Freeman.
- 3. Tamarin, R. H., & Leavitt, R. W. Principles of Genetics. Dubuque, IA: Wm. C. Brown.
- 4. Smith, J. M. Evolutionary Genetics. Oxford: Oxford University Press.
- 5. Klug, W.S., Cummings, R., Spencer, C. A., & Michael A. P., Concepts of Genetics. Pearson Publications
- 6. Albert G. M., & John W. F., Microbial Physiology, Wiley-Liss, A John Wiley& Sons, Inc. Publications.
- 7. Trudy T. A, Endang P. et al, Microbial Physiology and Genetics. Intelliz Press
- 8. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

 Brock Biology of Microorganisms, Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, David Stahl, W. Matthew Sattley.
- 9. Prescott's Microbiology, By Joanne Willey and Kathleen Sandman and Dorothy Wood

RECOMBINANT-	Course objective	Students Learning outcomes
DNA		
TECHNOLOGY	The objectives of this course are to	Given the impact of recombinant
	teach students with various	DNA technology in modern
COURSE CODE:	approaches to conducting	society, the students should be
18MS1BT313	recombinant DNA technology and	endowed with strong theoretical
	their applications in biological	knowledge of this technology. In
L-T-P: 3-0-0	research as well as industries.	conjunction with the practical in
		molecular biology & genetic
CREDIT 3		engineering, the students should
		be able to take up biological
		research as well as placement in
		the relevant biotech industry.

Unit I	Recombinant DNA technology: gene cloning, Genetic engineering, -	
Introduction and	concept and basic steps - rDNA Glossary, history of rDNA-	
tools for rDNA	recombinant Insulin	
technology		
3 lectures		
Unit II	Restriction Endonucleases, DNA Ligation Enzymes and, DNA	
DNA modifying	Modifying Enzymes: Nucleases, Kinases, phosphatases, and Reverse	
enzymes and	transcriptase other tools used for DNA Modification	
cloning techniques		
06 lectures		
Unit III	Plasmid Vectors, Vectors based on Lambda Bacteriophage, Cosmids,	
Cloning Vectors	M13 Vectors, Vectors for Cloning Large DNA Molecules Principles	
and Expression	for maximizing gene expression, expression vectors; pMal; GST; pET-	
Vectors	based vectors; Protein purification; His-tag; GST-tag; MBP-tag etc.;	
	Inclusion bodies; methodologies to reduce formation of inclusion	
12 lectures	bodies; mammalian expression and replicating vectors; Baculovirus	
	and Pichia vectors system, plant-based vectors, Ti and Ri as vectors,	
	yeast vectors, shuttle vectors	
Unit IV	Genomic library, cDNA library, Growing & Storing Libraries,	
Construction	construction of microarrays, cDNA Cloning (5'&3' RACE) Basic	
libraries and	DNA Sequencing, Whole genome sequencing, Next generation	
sequencing	sequencing technologies	
technologies		
10 lectures		
Unit V	Microbial, Yeast Saccharomyces Cerevisiae as heterologous protein	
Gene Expression in	expression platforms, Protein expression in insect Cells and	
Microbial and	Mammalian Cells; protein-protein interactions using yeast two-hybrid	
Eukaryotic Systems	system;	
06 lectures		
Unit VI	Gene transfer techniques, Application of Genetically Engineered	
Genetic	Strains of microbes; Biosafety Issues related to recombinant DNA	
Manipulation Of	Technology Genetic Manipulation of microorganisms	
microorganisms		
05 lectures		

- 1. Old, R. W., Primrose, S. B., & Twyman, R. M. (2001). *Principles of Gene Manipulation: an Introduction to Genetic Engineering*. Oxford: Blackwell Scientific Publications.
- 2. Green, M. R., & Sambrook, J. (2012). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 3. Brown, T. A. (2006). Genomes (3rd ed.). New York: Garland Science Pub.
- 4. Selected papers from scientific journals, particularly Nature & Science.
- 5. Technical Literature from Stratagene, Promega, Novagen, New England Biolab etc.

BIOINFORMATICS	Course objective	Students Learning outcomes
BIOINFORMATICS COURSE CODE: 20MS1BT213 L-T-P: 2-0-0 CREDITS 2	Course objective The objectives of this course are to provide theory and practical experience of the use of common computational tools and databases which facilitate investigation of molecular biology and evolution-related concepts.	On successful completion of this course, student will be able to: Develop an understanding of basic theory of these computational tools; Gain working knowledge of these computational tools and methods; Prediction of structure from sequence and subsequently testing the accuracy of predicted structures Appreciate their relevance for
		investigating specific contemporary biological questions;
		 Critically analyse and interpret results of their study.

Duit III Multiple Sequence Alignment methods (MSA), Scoring of a Multiple Sequence Progressive (CLUSTALW and PILEUP), Iterative (Genetic) and Hi Markov Model (HMM) based methods of MSA, Profile and BLG level analysis, Motif and Pattern searching and primer designing. Unit IV Molecular evolution basics, phylogenetic tree and termino different methods of Phylogenetic tree prediction: maximum parsim	ysis; ools; ent. JM), Dot	
searching of databases similar sequence; NCBI; publicly available to resources at EBI; sequence, sequence similarity, homology, alignm Unit II Different scoring models, Substitution matrices (PAM and BLOS) Pairwise Sequence Alignment Alignment Glectures Smith-Waterman algorithm, Choosing of best scoring matrix, gappenalties, Significance of score, FASTA and BLAST algorithms. Unit III Multiple Sequence Alignment Multiple Sequence Alignment Markov Model (HMM) based methods of MSA, Profile and BLO level analysis, Motif and Pattern searching and primer designing. Unit IV Molecular evolution basics, phylogenetic tree and termino different methods of Phylogenetic tree prediction: maximum parsim	ools; ent. JM), Dot	
Unit II Different scoring models, Substitution matrices (PAM and BLOS) Pairwise Sequence Pairwise Alignment: Concept of Global and Local Alignment, matrix method, Dynamic programming (Needleman-Wunsch algor) Smith-Waterman algorithm, Choosing of best scoring matrix, gap penalties, Significance of score, FASTA and BLAST algorithms. Unit III Multiple Sequence Alignment methods (MSA), Scoring of a M Progressive (CLUSTALW and PILEUP), Iterative (Genetic) and Hi Markov Model (HMM) based methods of MSA, Profile and BLO level analysis, Motif and Pattern searching and primer designing. Unit IV Molecular evolution basics, phylogenetic tree and termino different methods of Phylogenetic tree prediction: maximum parsin	ont. JM), Dot	
Unit IIDifferent scoring models, Substitution matrices (PAM and BLOS)Pairwise SequencePairwise Alignment: Concept of Global and Local Alignment, matrix method, Dynamic programming (Needleman-Wunsch algor Smith-Waterman algorithm, Choosing of best scoring matrix, gar penalties, Significance of score, FASTA and BLAST algorithms.Unit IIIMultiple Sequence Alignment methods (MSA), Scoring of a MMultiple SequenceProgressive (CLUSTALW and PILEUP), Iterative (Genetic) and HialignmentMarkov Model (HMM) based methods of MSA, Profile and BLO6 lecturesIevel analysis, Motif and Pattern searching and primer designing.Unit IVMolecular evolution basics, phylogenetic tree and terminoPhylogeneticdifferent methods of Phylogenetic tree prediction: maximum parsim	JM), Dot	
Pairwise Sequence Alignment Alignment Concept of Global and Local Alignment, matrix method, Dynamic programming (Needleman-Wunsch algorithm Choosing of best scoring matrix, gare penalties, Significance of score, FASTA and BLAST algorithms. Unit III Multiple Sequence Alignment methods (MSA), Scoring of a Markov Model (HMM) based methods of MSA, Profile and BLO level analysis, Motif and Pattern searching and primer designing. Unit IV Molecular evolution basics, phylogenetic tree and termino different methods of Phylogenetic tree prediction: maximum parsim	Dot	
Alignment 6 lectures Smith-Waterman algorithm, Choosing of best scoring matrix, gap penalties, Significance of score, FASTA and BLAST algorithms. Unit III Multiple Sequence Alignment methods (MSA), Scoring of a Markov Model (HMM) based methods of MSA, Profile and BLG level analysis, Motif and Pattern searching and primer designing. Unit IV Molecular evolution basics, phylogenetic tree and termino different methods of Phylogenetic tree prediction: maximum parsing		
Smith-Waterman algorithm, Choosing of best scoring matrix, gar penalties, Significance of score, FASTA and BLAST algorithms. Unit III Multiple Sequence Alignment methods (MSA), Scoring of a Markov Model (HMM) based methods of MSA, Profile and BLG level analysis, Motif and Pattern searching and primer designing. Unit IV Molecular evolution basics, phylogenetic tree and terminod different methods of Phylogenetic tree prediction: maximum parsing	thm,	
Unit III Multiple Sequence Alignment methods (MSA), Scoring of a M Multiple Sequence Progressive (CLUSTALW and PILEUP), Iterative (Genetic) and Hi alignment Markov Model (HMM) based methods of MSA, Profile and BLO level analysis, Motif and Pattern searching and primer designing. Unit IV Molecular evolution basics, phylogenetic tree and termino different methods of Phylogenetic tree prediction: maximum parsim		
Unit IIIMultiple Sequence Alignment methods (MSA), Scoring of a Markov Model (HMM) based methods of MSA, Profile and BLG level analysis, Motif and Pattern searching and primer designing.Unit IVMolecular evolution basics, phylogenetic tree and termino different methods of Phylogenetic tree prediction: maximum parsing	Smith-Waterman algorithm, Choosing of best scoring matrix, gap	
Multiple Sequence alignment 6 lectures Unit IV Progressive (CLUSTALW and PILEUP), Iterative (Genetic) and His Markov Model (HMM) based methods of MSA, Profile and BLG level analysis, Motif and Pattern searching and primer designing. Molecular evolution basics, phylogenetic tree and terminor different methods of Phylogenetic tree prediction: maximum parsim	penalties, Significance of score, FASTA and BLAST algorithms.	
alignmentMarkov Model (HMM) based methods of MSA, Profile and BLO6 lectureslevel analysis, Motif and Pattern searching and primer designing.Unit IVMolecular evolution basics, phylogenetic tree and terminoPhylogeneticdifferent methods of Phylogenetic tree prediction: maximum parsin	ίSΑ,	
6 lectures level analysis, Motif and Pattern searching and primer designing. Unit IV Molecular evolution basics, phylogenetic tree and termino different methods of Phylogenetic tree prediction: maximum parsim	Progressive (CLUSTALW and PILEUP), Iterative (Genetic) and Hidden	
Unit IV Molecular evolution basics, phylogenetic tree and termino different methods of Phylogenetic tree prediction: maximum parsim	Markov Model (HMM) based methods of MSA, Profile and BLOCK	
Phylogenetic different methods of Phylogenetic tree prediction: maximum parsim	level analysis, Motif and Pattern searching and primer designing.	
, ,	ogy,	
	different methods of Phylogenetic tree prediction: maximum parsimony,	
Analysis distance (UPGMA, NJ), maximum likelihood methods, Phylogene	distance (UPGMA, NJ), maximum likelihood methods, Phylogenetic	
4 lectures and evolutionary analysis.	and evolutionary analysis.	
Unit V Structural Protein structure prediction: protein folding and model genera	tion;	
Alignment Tools secondary structure prediction; analyzing secondary struct	ıres;	
and Protein homology modelling: potential applications, description, methodo	ogy,	
Tertiary Structure homologous sequence identification; align structures, align m	odel	
Prediction sequence; construction of variable and conserved regions; stru	ture	
5 Lectures aided sequence techniques of structure prediction; structural profile	S .	
Unit VI terminology of RNA secondary structure, inferring structure		
RNA Structure comparative sequence analysis, RNA secondary structure predic	by	
Analysis Basic algorithms and methods of RNA folding.	by	
3 Lectures	by	

Text Books:

- 1. D.W. Mount *Bioinformatics: Genome and Sequence Analysis*: (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 2. Ian Korf, Mark & Josaph: BLAST, Oreilly Publisher, 2003
- 3. R. Durbin, S. Eddy, A. Krogh and G. Mitchison, *Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.* Cambridge University Press.
- 4. J. Pevsner (2002) Bioinformatics and Functional Genomics; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 5. A.D. Baxevanis & B.F.F. Oulette *Bioinformatics A practical guide to the Analysis of Genes and Proteins*, 2002, Willey International publishers.
- 6. M.J. Bishop and C.J. Rawlings (editors), *DNA and Protein Sequence Analysis---A Practical Approach* IRL Press at Oxford University Press, ISBN 0 19 963464 7 (Pbk)
- 7. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.

Reference Books:

- 1. J. Setubal and J. Meidanis (1997) *Introduction to Computational Molecular Biology*, PWS Publishing Co.
- 2. J. Pevsner (2002) Bioinformatics and Functional Genomics; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

IMMUNOLOGY AND	
IMMUNOTECHNOLOGY	,
LAB	
COURSE CODE:	
18MS7BT211	
T	

L-T-P: 0-0-2

CREDITS: 1

Course Objectives

The objectives of this lab course are to develop an understanding about practical aspects of components of immune system as well as their function. Basic as well as advanced methods will be taught to detect different antigen and antibody interactions. isolation of different lymphocyte cells etc. and how they can be used in respective research work.

Students Learning outcomes Students should be able

- Evaluate usefulness of immunology in different pharmaceutical companies;
- Identify proper research lab working in area of their own interests;
- Apply their knowledge and design immunological experiments to demonstrate innate, humoral or cytotoxic lymphocyte responses and figure out kind of immune responses in setting infection. (viral bacterial) by looking at cytokine profile.

Syllabus:

- 1. To perform blood typing by agglutination.
- 2. To antigen detection by Dot ELISA method.
- 3. To quantify the concentration of unknown antigen by radial Immunodiffusion (RID).
- 4. To perform ouch terlony antigen for antibody titration.
- 5. To quantify the concentration of unknown antigen by rocket Immunoelectrophoresis.
- 6. To characterized the given antibody by Immunoelectrophoresis.
- 7. To quantify the amount of precipitation by Quantitative precipitation assay.
- 8. To determine the concentration of antigen by sandwich ELISA method.
- 9. To separate mononuclear cells from peripheral blood
- 10. To isolate the lymphocyte from whole blood by density gradient centrifugation method
- 11. To estimate the antibody titer using haemagglutination assay.
- 12. To determine Total Leukocytes Count (TLC) of the given blood sample.
- 13. To determine the relative number of white cells in the blood by performing differential cell counts
- 14. To perform Erythrocyte Rosette-forming Cell Test, ERFC

- 1. Lab Manual of the Department of Biotechnology and Bioinformatics, JUIT, Waknaghat.
- 2. Hay FC and Westwood OMR (2003) Practical Immunology, 4th Ed., Blackwell Publishing. 3.
- 3. Virtual Lab. (http://vlab.amrita.edu/?sub=3&brch=70),

https://vlab.amrita.edu/?sub=3&brch=69)

ENZYMES & BIOPROCESS TECHNOLOGY LAB

COURSE CODE: 21MS7MB271

L-T-P: 0-0-2

CREDITS: 1

Course Objectives

The objective of the course is to provide hands on training to students in bioprocess technology with the usage of microbials and enzymes.

This course covers practical aspects of upstream processing and downstream unit operations with respect to current requirements of the manufacturing industries.

Students Learning outcomes Students should be able

- To investigate, design and conduct experiments, analyze and interpret data, and apply the laboratory skills to solve complex bioprocess technology problems;
- To learn how to operate bench scale bioreactor;
- To learn how to determine various Monod's Kinetics parameter;
- To learn how to determine various Michaelis Menten Kinetics parameter;
- To learn how to recover the various bioproduct after their production;
- To learn how to characterize the products after their recovery

Syllabus:

- 1. Describe the various parts of the bench-top fermenter (bioreactor) along with their functions.
- 2. Batch fermentation using shake-flask for ethanol production by *Saccharomyces cerevisae*.
- 3. To study growth kinetics parameters of *E. coli*.
 - a) Specific growth rate (μ) h⁻¹
 - b) Doubling time (t_d) h
 - c) Maximum specific growth rate $(\mu_m) h^{-1}$
 - d) Saturation constant (K_s) gm/l
- 4. Setting up of a fermentation process for the production of extracellular industrial enzyme from the selected microbe of industrial importance
- 5. Determination of Growth yield coefficient $(Y_{x/s})$ and Productivity of biomass after setting of a fermentation

- 6. Downstream processing of the industrial enzyme produced by the fermentation process.
 - a) Clarification
 - b) Yield estimation
 - c) Concentration using salt-induced precipitation
 - d) Dialysis
 - e) Purity check through SDS-PAGE and specific activity determination
- 7. Disruption of yeast cells using sonication to recover intracellular Invertase enzyme
- 8. Determination of protein and enzyme content in the cell lysate after the cell disruption
- 9. Determination of Michaelis Menten's kinetics parameters of purified amylase enzyme
- 10. Preparation of Immobilized yeast cells in calcium alginate beads
- 11. Characterization of immobilized yeast cells in terms of activity and stability
- 12. Preparation of Immobilized enzyme in calcium alginate beads
- 13. Characterization of immobilized enzyme in terms of activity and stability

- 1) Lab Manual of the Department of Biotechnology and Bioinformatics, JUIT, Waknaghat.
- M.L. Shuler and F. Kargi, "Bioprocess Engineering--basic Concepts", 2nd Edn. Prentice-hall Of India Pvt Ltd (2008).
- 3) Keith Wilson, John Walker, "Principles and Techniques of Biochemistry and Molecular Biology, 7th ed., Cambridge University Press, Singapore, 2010.
- 4) Raja Ghosh, "Principles of Bioseparation Engineering", World Scientific Publishing Co. Pte. Ltd., Singapore, 2006.
- 5) Pauline M. Doran, "Bioprocess Engineering Principles", 8th ed., Academic press, New York, 2003.
- 6) Peter F. Stanbury, Stephen J. Hall & A. Whitaker, "Principles of Fermentation Technology", Â Elsevier India Pvt Ltd. (2007).
- 7) Berg, J.M., Tymoczko, J.L. and Stryer, L., "*Biochemistry*", 5th ed., W.H. Freeman and Company, New York, 2002
- 8) Nelson D.L., Cox M.M., "Lehninger Principles of Biochemistry", 5th ed., W.H. Freeman and Company, New York, 2008.
- 9) Nicholas C. Price and Lewis Stevens, "Fundamental of Enzymology", Oxford University Press, Oxford. ISBN: 9780198502296.
- 10) Sawney S.K., Singh R. "Introductory Practical Biochemistry", Narosa Publisher, 2000. ISBN 9788173193026.

BIOINFORMATICS	Course Objectives	Students Learning outcomes
LAB	The objectives of this course are to	Students should be able
	provide practical experience of the	■ Understand the use of common
COURSE CODE:	use of common computational tools	bioinformatics resources
18MS7BI214	and databases which facilitate	(NCBI)
	investigation of molecular biology	■ Understand various databases
L-T-P: 0-0-2	and evolution-related concepts.	and tools in NCBI (PubMed,
		Nucleotide, gene, proteins,
CREDITS: 1		BLAST)
		■ Understand various databases
		and tools in Expasy (Swissprot,
		PROSITE)
		■ Hands-on of pairwise sequence
		alignment tools-global and local
		■ Hands-on of multiple sequence
		alignment tools
		■ Developing three-dimensional
		model of a protein structure
		■ Hands-on of phylogenetic
		analysis tools and visualization

Syllabus:

- 1. Retrieval of literature and biological sequences from PubMed and NCBI.
- 2. BLAST program for comparing primary biological sequence information.
- 3. Protein resources: Use of ExPASy for sequence retrieval and analysis.
- 4. Use of EMBOSS tools for sequence analysis: Pairwise Sequence Alignment.
- 5. Use of Clustal and other tools (MAFFT, MUSCLE) for Multiple Sequence Alignment (MSA).
- 6. Use of PDB structural database and structure visualization using Pymol, Rasmol, and Discovery Studio.
- 7. Use of gene prediction methods (GRAIL, Genscan, Glimmer).
- 8. Phylogenetic analysis of protein and nucleotide sequences.
- 9. Secondary structure prediction using protein sequence.
- 10. Use of different protein structure prediction databases (SCOP & CATH).
- 11. Homology modelling of proteins in MODELLER.
- 12. Use of various primer designing and restriction site prediction tools.
- 13. Prediction of RNA secondary structure.
- 14. Use of tools for mutation and analysis of the energy minimization of protein structures.

Text Books:

- 1. D.W. Mount *Bioinformatics: Genome and Sequence Analysis*: (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 2. Ian Korf, Mark & Josaph: BLAST, Oreilly Publisher, 2003
- 3. R. Durbin, S. Eddy, A. Krogh and G. Mitchison, *Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.* Cambridge University Press.
- 4. J. Pevsner (2002) Bioinformatics and Functional Genomics; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 5. A.D. Baxevanis & B.F.F. Oulette *Bioinformatics A practical guide to the Analysis of Genes and Proteins*, 2002, Willey International publishers.
- 6. M.J. Bishop and C.J. Rawlings (editors), *DNA and Protein Sequence Analysis---A Practical Approach* IRL Press at Oxford University Press, ISBN 0 19 963464 7 (Pbk)
- 7. Lesk, A. M. (2002). *Introduction to Bioinformatics*. Oxford: Oxford University Press.
- 8. J. Pevsner (2002) Bioinformatics and Functional Genomics; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

RECOMBINANT DNA	Course Objectives
TECHNOLOGY LAB	The objectives of this course are to
COURSE CODE: 18MS7BT373	provide students with experimental knowledge and hands-on skills of methods and techniques for
L-T-P: 0-0-4	recombinant DNA technology and molecular cloning.
CREDITS: 2	

Students Learning outcomes Students should be able to gain hands-on experience in recombinant DNA technology techniques cloning, gene protein expression. This experience would enable them to begin a career in industry engages in genetic engineering as well as in research laboratories conducting fundamental research.

Syllabus:

- 1. Preparation of stock buffers (TBE, TAE, TE) and Agarose gel electrophoresis
- 2. Plasmid DNA isolation and DNA quantitation
- 3. Extraction of DNA from gel
- 4. In vitro amplification of DNA fragment by Polymerase Chain Reaction
- 5. Designing of Primers and PCR cycle for given DNA sequence and analysis by Gradient **PCR**

- 6. Restriction Enzyme digestion of plasmid DNA (Blunt & Cohesive)
- 7. Vector and Insert Ligation (Using T₄ DNA ligase)
- 8. Preparation of competent cells by CaCl₂ treatment
- 9. Transformation of *E. coli* with standard plasmids, Calculation of transformation efficiency
- 10. Electroporation of plasmid DNA into mycobacterial cells
- 11. Confirmation of the insert by Colony PCR and Restriction mapping
- 12. Expression of recombinant protein, concept of soluble proteins and inclusion body formation in E. coli
- 13. SDS-PAGE analysis of proteins
- 14. Plating of Bacteriophage

Recommended Textbooks and References:

1. Green, M. R., & Sambrook, J. (2012). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

ENVIRONMENTAL	Course Objectives	Students Learning outcomes
MICROBIOLOGY	To acquaint the students	Students should be able to:
COURSE CODE: 21MS1MB311 L-T-P: 3-0-0 CREDITS: 3	with the development and techniques of environmental microbiology useful in industry. Scientific evaluation of various characteristics.	 Acquire the principles of Microbiology and fundamental concepts related to environmental safety and protection. Scientifically basic bioremediation techniques and their application in the environment. Analyze and interpret role of microbes as biofertilizers and biopesticides in agriculture field Designate vital role of the microbes in the environment and their association with human beings. Monitoring the environmental pollutants and their treatment using specific microorganisms.

Unit	Topics Covered
Unit 1: Introduction to Environmental Microbiology 4 lectures	Introduction, history and scope of Environmental Microbiology. Role of microorganisms in waste management (domestic, industrial, hazardous) and pollution indicators strain improvement; Microbial biodiversity and its conservation; microbial energy metabolism, microbial growth kinetics and elementary chemostat theory, relevant microbiological processes, microbial ecology
Unit 2: Principles of Bioremediation 6 lectures	Bioremediation: Fundamentals, methods and strategies of application (bio stimulation, bioaugmentation) – examples, Bioremediation of metals (Cr, As, Se, Hg), radionuclide (U, Te), organic pollutants (PAHs, PCBs, Pesticides, TNT etc.), technological aspects of bioremediation (in situ, ex situ)
Unit 3: Role of microorganisms in pollution control and bioremediation 7 lectures	Application of bacteria and fungi in bioremediation: White rot fungi vs. specialized degrading bacteria: examples, uses and advantages vs. disadvantages; Phytoremediation: Fundamentals and description of major methods of application (phytoaccumulation, phytovolatilization, Phytodegradation, Rhizofiltration, Phyto stabilization).

Unit 4: Microorganism in agriculture and crop protection 7 lectures	Bioinsecticides: <i>Bacillus thuringiensis</i> , Baculoviruses, uses, genetic modifications and aspects of safety in their use; Biofungicides: Description of mode of actions and mechanisms(e.g. <i>Trichoderma</i> , <i>Pseudomonas fluorescens</i>); Biofertilizers: Symbiotic systems between plants– microorganisms (nitrogen fixing symbiosis, Mycorrhiza fungi symbiosis), Plant growth promoting rhizobacteria (PGPR) – uses, practical aspects and problems in application.
Unit 5: Microorganisms in Biofuels and bioenergy generation 7 lectures	Environmental microbiology and biofuels: biogas; bioethanol; biodiesel; biohydrogen; Description of the industrial processes involved, microorganisms and biotechnological interventions for optimization of production; Microbiologically enhanced oil recovery (MEOR); Bioleaching of metals; Production of bioplastics; Production of biosurfactants: bioemulsifiers; Paper production: use of xylanases and white rot fungi.
Unit 6: Microorganism in Bioconversions and sustainable products synthesis 5 lectures	Modeling and economics of bioconversion of biomass (agriculture, poultry, waste food) to fuels, liquid and gaseous biofuels production, Bio adhesives, Biopolymers, Bio lubricants, Bio plastics, fibers and paper.
Unit 7:Detection of Pollutants and Environmental Monitoring: 6 lectures	Bio-Indicators or Biomarkers, Biosensors for Environmental Monitoring. Toxicity screening of samples using bioluminescence or fluorescence, Water quality monitoring, Atmospheric quality bio- monitoring, and soil-contamination bio-monitoring.

- 1. Zeynep. A, (2018) Biosensors and nanotechnology: applications in health care diagnostics, Wiley.
- 2. Prickril, B and Rasooly, A, (2017) Biosensors and Biodetection: methods and protocol Electrochemical, Bioelectronic, Piezoelectric, Cellular and Molecular Biosensors, Human Press-Springer Protocol.
- 3. Yoon, J. Y, (2016) Introduction to Biosensors: From Electric Circuits to Immunosensors, Springer Nature
- 4. Turner A.P.F, Karube I and Wilson G.S, (1987) Biosensors- Fundamentals and applications, Oxford Univ. Press.
- 5. Yang V.C. and T.T.Ngo, (2000) Biosensors and their Applications, Academic/Plenum Publishers.
- 6. Ashok Mulchandani and Kim R Rogers, (1998) Enzyme and Microbial bio sensors: Techniques and Protocols, Humana Press Totowa, NJ.
- 7. Turner A.P.F and Wilsons G.S, (1997) Biosensors: Fundamentals and Applications, Oxford Science Publications

DIAGNOSTIC	Course Objectives	Students Learning outcomes
MICROBIOLOGY	To familiarize the students	Students should be able to:
AND VACCINES	with the principles & applications of the latest	and molecular approaches and
COURSE CODE:	state-of-the-art microbial	inemodelegy should be used for
21MS1MB312	diagnostic techniques/ technology used in	their comparative advantages and
L-T-P: 3-0-0	laboratories the world over and knowledge of vaccines	
CREDITS: 3	against diverse microbial pathogens with current research in the domains.	
		 The students would have in-depth knowledge of microscopy based methods and antimicrobial susceptibility and its application in the industry for diagnostics.
		The students would have in-depth knowledge of various vaccines against human pathogens along with immune response and technology used for the delivery of vaccines.

Unit	Topics Covered
Unit 1: Immunological and	Application of immunological principles, Antibody generation,
Histochemical Diagnostics	Detection of molecules using ELISA, RIA, western blot, immune
8 lectures	precipitation, flowcytometry and immunofluorescence microscopy,
	detection of molecules in living cells, in situ localization by techniques
	such as FISH and GISH.
Unit 2: DNA Diagnostics	Amplification by PCR (Inverse PCR, Multiplex PCR, Nested PCR,
and mutation analysis of	Hot-start, In situ PCR, applications and limitations). DNA
Microbes	fingerprinting and polymorphism studies (SNP, RAPD, RFLP, AFLP,
7 lectures	Mutation detection etc). Emphasis on analysis and interpretation of
	results.
Unit 3: Microscopic	Visualization of cells and subcellular components by light microscopy,
techniques:	resolving powers of different microscopes, microscopy of living cells,
3 lectures	scanning and transmission microscopes, different fixation and staining
	techniques for EM.

Unit 4: Molecular Diagnostics 6 lectures	DNA sequencing methods, strategies for genome sequencing. Methods for analysis of gene expression at RNA and protein level, expression analysis such as micro array based techniques. Real Time PCR. Molecular approaches to diagnosis and strain identification. Biosensors – types, applications, examples (glucose etc), telemedicine.
Unit 5: Detection and identity of microbial diseases, antimicrobial susceptibility testing 4 lectures	Direct detection and identification of pathogenic-organisms that are slow growing or currently lacking a system of <i>in vitro</i> cultivation. Antimicrobial Susceptibility Testing – concept, KB Method. Laboratory methodologies for bacterial antimicrobial disk diffusion, tube dilution, microbroth dilution methods.
Unit 6: Concept and Types of vaccines and delivery systems 4 lectures	Vaccines, primary and secondary immune response. Types of vaccines - sub-unit vaccines, recombinant vaccines, synthetic vaccines, idiotypic based - vaccines, edible vaccines, DNA vaccines, glycoconjugate vaccines, deletion vaccines. Vaccine delivery system and approaches to enhance immunogenicity, delivery of particulate antigens through liposomes, microspheres etc.
Unit 7: Examples of Vaccines against Microbes 10 lectures	Rabies vaccines, PPRV vaccines, Chimeric vaccines – JEV/West Nile, Meningococcal conjugate &protein-based vaccines, Oral B subunit + whole cell cholera vaccine, Multicellular Parasite vaccines, Malaria vaccine, Novel Vaccines against Mycobacterium tuberculosis.

- 1. Burtis, Carl A, Ashwood, Edward R, Bruns, David E., "Tietz textbook of Clinical Chemistry & Molecular Diagnostics" USA: Saunders, 2006.
- 2. World Organization for Animal Health: "Manual of Diagnostic Tests and Vaccines for Terrestrial Animals" Volumes I & II, 6th Edition, 2010.
- 3. Rao, Juluri R, Fleming, Colin C., Moore, John E., "Molecular Diagnostics: current technology and Applications", Horizon Bioscience, U. K., 2006.
- 4. Goldsby, Richard A., Kuby, Janis, "Immunology", New York: WH Freeman and Company, 2003.

Mahon, Connie R.; Lehman, Donald C.; Manuselis, George "Textbook of Diagnostic Microbiology". USA: Saunders, 2007.

Campbell, A. M., & Heyer, L. J. (2006). Discovering Genomics, Proteomics, and Bioinformatics. San Francisc

FOOD & DAIRY MICROBIOLOGY COURSE CODE: 21MS1MB411 L-T-P: 3-0-0 CREDITS: 3	Course Objectives To understand the concepts of technology and safety issues of food and dairy microbiology	Students should be able to learn: Basic understanding food and Dairy Microbiology Microorganism relevant in food and dairy, their significant and detection Food Preservation and safety issues Food fermentation, production technologies of selected products Starter cultures in dairy food products and production technologies of selected dairy products
--	--	---

Unit	Topics Covered
Unit 1: Introduction,	Food Microbiology; origin, subfields, scope and frontier areas,
Sources of contamination	Dairy Microbiology; origin, subfields and scope, Sources of
and Hygienic food	microbial contamination in foods and dairy products, and
production practices	hygienic practices in food and milk production
8 lectures	
Unit 2 Micro flora of Microflora of foods and dairy products and their significant	
Food and dairy and	Sampling procedures of food for microbial detection,
Detection of	Quantitative method for microbial enumeration in food,
microorganisms in Food	Qualitative methods, Tests for bacterial toxin, Rapid detection
8 lectures	tests Bacteriological Examination milk
Unit 3: Food Preservation	Food Spoilage; Survival of spoilage organisms, Traditional and
and Packaging & Food	advanced preservation methods, Food packaging, Packaging
Safety Issues	material, Advanced and innovative packaging technologies,
8 lectures	Food safety; GAP, GMP, HACCP, TQM relevant to food
	production

UNIT 4: Food	Food Fermentation, Types of fermentation, Types of substrates
fermentation, Fermented	Benefit of fermentation - nutritive value of fermented food,
Foods, Bread	Production technologies of some fermented foods: Sauerkraut,
Fermentation and	Soya based fermented products, Traditional fermented foods:
Alcoholic beverages	Idli, dosa etc., Baker's yeast importance in bread fermentation,
10 lectures	production technology of bread, Production of beer, wine and
	vinegar etc
Unit 5: Starter culture	Definition, types, propagation of starter cultures, Quality and
Technology and	activity of starter, factors affecting quality of starters, defects,
Fermented dairy	Preservation of starter cultures. Production technology of
products	selected Fermented dairy products; Cheese, Yoghurt, Cultured
8 lectures	milk, sour cream etc

- 1. Frazier W.C. and Westhoff D.C. (2008) Food Microbiology, 4th Edn. Tata McGraw Hill Publishing Co., New Delhi.
- 2. Fundamental of Food Microbiology, Bibek Ray 3rd Edition, CRC Press
- 3. Bamforth C.W. (2005) Food, Fermentation and Microorganisms, Blackwell Science.
- 4. Principles of Fermentation Technology 3rd Edition Peter Stanbury Allan Whitaker Stephen Hall Fundamentals of Food Biotechnology Byong H. Lee John Wiley and Sons
- 5. Food Microbiology M. R. Adams and M. O. Moss
- 6. Fundamental Dairy Microbiology Prajapati, J.B.
- 7. Doyle M.P. and Buchanan R.L. (Ed.) (2013) Food Microbiology: Fundamentals and Frontiers, 4th Edn. ASM press.
- 8. Jay J.M., Loessner M.J. and Golden D.A. (2005) Modern Food Microbiology, 7th Edn. Springer Publishers.
- 9. Robinson R.K. (2002) Dairy Microbiology: Milk and Milk Products, 3rd Edn. Wiley Publishers.
- 10. Biochemistry Stryer 7thEditionBiochemistry by Berg JM, Tymoczko JL, and Stryer L, published by W.H. Freeman and Company
- 11. Microbiology 5th edition E.C.S. Chan, Michael J. Pelczar, Jr., Noel R. Krieg
- 12. Lehninger Principles of Biochemistry, 5thEdition David L. Nelson and Michael M Cox.
- 13. Prescott's microbiology Willey, J. M., Sherwood, L., Woolverton, C. J., Prescott, L. M., and Willey, J. M. (2011). New York, McGraw-Hill.
- 14. Microbiology: An Introduction 12thEdition Gerard J. Tortora, Berdell R. Funke and Christine L. Case

AGRICULTURAL Object to ma about harmf micro signif	rse Objectives tive of this course is ke students aware beneficial and ful activities of organism which are icant to plant health griculture	 Students Learning outcomes Understand the role of microbes in agriculture Learners will gain detailed idea on, harmful or beneficial effects of microorganisms on Agriculture Understand plant microbe interactions Understand general principles of plant disease management To understand infection process and control measures of important plant diseases.
--	--	--

Unit	Topics Covered
Unit I: Concepts and scope of agricultural microbiology 3 lectures	Concepts and scope of agricultural microbiology, importance of microorganisms in agriculture
Unit II: Soil Microbiology Soil microorganisms 10 lectures	Distribution of microorganisms in soil, quantitative and qualitative estimation of microorganisms in soil, Decomposition of organic matter and soil health. Nitrogen cycle, nitrogen fixation, symbiotic, non-symbiotic, associative organisms, ammonification, nitrification, denitrification, reactions, Microbial transformations of phosphorus, sulphur and minor nutrients. Biofertilizers and their applications in agriculture.
Unit III: Plant Microbe interactions and General Principle of Disease management 10 lectures	Different types of Plant Microbe interactions, Chemical nature and classification of fungicides and antibiotics: Spraying and dusting equipment, their care and maintenance. Important cultural practices and their role in disease management, solarization, integrated disease management.
Unit IV: Fungal Diseases of Crop Plants 10 lectures	Important Fungal diseases of selected crops with special reference to etiology, disease cycle, perpetuation, epidemiology and management.

Unit V: Bacterial and Viral Diseases of Crop Plants 9 lectures	Bacterial and Viral Diseases of selected Crop Plants: Etiology, disease cycle, perpetuation, epidemiology and management.
--	---

- 1. Introduction to Soil Microbiology, Wiley eastern Ltd., New Delhi
- 2. Agricultural Microbiology, D.J. Bagyaraj, G. Rangaswami, 2007 PHI learning Pvt. Ltd.
- 3. Plant Pathology by George Agrios 5th Edition, 2020
- 4. Agricultural Microbiology by N. S. Subba Rao 3rd Edition, 2020

IPR BIOSAFETY Course Objectives	Students Learning outcomes
AND BIOETHICS COURSE CODE: 21MS2MB311 L-T-P: 3-0-0 CREDITS: 3 To provide basic knowledge about intellectual property rights regulations and registrations. To provide insight about biosafety and bioethical issues associated in biological sciences.	To enable students with basic concepts and knowledge of intellectual property rights.

Unit	Topics Covered
Unit 1: Introduction of different tools of IPR 3 lectures	Introduction to intellectual property; types of IP: patents, trademarks, copyright & related rights, industrial design, traditional knowledge, geographical indications, protection of new GMOs. Protection and registration.
Unit 2: History and International Agreements of IP 4 lectures	International framework for the protection of IP; IP as a factor in R&D IPs of relevance to biotechnology and few case studies. Introduction to history of GATT, WTO, WIPO and TRIPS; plant variety protection and farmers rights act; concept of 'prior art': invention in context of "prior art".
Unit3: IPR/Patent databases 3 lectures	Patent databases - country-wise patent searches (USPTO, EPO, India); analysis and report formation

Basics of patents: types of patents; Indian Patent Act 1970; recent amendments; WIPO Treaties; Budapest Treaty; Patent Cooperation Treaty (PCT) and implications; procedure for filing a PCT application; role of a Country Patent Office; filing of a patent application; precautions before patenting-disclosure/non-disclosure-patent application- forms and guidelines including those of National Bio-diversity Authority (NBA) and other regulatory bodies, fee structure, time frames; types of patent applications: provisional and complete specifications
International IP treaties (Madrid Agreement, Trademark law treaty,
Patent Law treaty etc.)WIPO, WTO, and TRIPS. International agreement; recent amendments; WIPO Treaties; Budapest Treaty; Patent Cooperation Treaty (PCT) and implications
Commercialization of patented innovations; licensing – outright sale,
licensing, royalty; patenting by research students and scientists-
university/organizational rules in India and abroad, collaborative
research - backward and forward IP; benefit/credit sharing among
parties/community, commercial (financial) and non-commercial
incentives. Patent infringement- meaning, scope, litigation, case
studies and examples.
Introduction; historical background; introduction to biological safety
cabinets; primary containment for biohazards; biosafety levels; GRAS organisms, biosafety levels of specific microorganisms; recommended biosafety levels for infectious agents and infected animals; definition of GMOs & LMOs;
Principles of safety assessment of transgenic plants – sequential steps
in risk assessment; concepts of familiarity and substantial equivalence; risk – environmental risk assessment and food and feed safety assessment; problem formulation – protection goals, compilation of relevant information, risk characterization and development of analysis plan; risk assessment products derived from RNAi, genome editing tools
International regulations – Cartagena protocol, OECD consensus documents and Codex Alimentarius; Indian regulations – EPA act and rules, guidance documents, regulatory framework – RCGM, GEAC, IBSC and other regulatory bodies; Draft bill of Biotechnology Regulatory authority of India - containments – biosafety levels and category of rDNA experiments; field trails – biosafety research trials – standard operating procedures - guidelines of state governments; GM labeling – Food Safety and Standards Authority of India (FSSAI).

Unit 10:Bioethics principles and tools 6 lectures	Introduction, ethical conflicts in biological sciences - interference with nature, bioethics in health care - patient confidentiality, informed consent, euthanasia, artificial reproductive technologies, prenatal diagnosis, genetic screening, gene therapy, transplantation. Bioethics in research – cloning and stem cell research, Human, animal and microbial experimentation, rights/welfare, Agricultural /environmental microbiology - Genetically engineered food, environmental risk, labeling and public opinion. Sharing benefits and protecting future generations - Protection of environment and biodiversity – biopiracy
---	---

- 1. IPR- A primer by R. Anita Rao and Bhanoji Rao
- 2. Bioethics and Biosafety by M K Sateesh
- 3. Patent Search: Tools and Techniques- David Hunt
- 4. Intellectual Property Rights by NS Rathore, SM Mathur, Priti Mathur and Ansul Rathi
- 5. Ganguli, P. (2001). *Intellectual Property Rights: Unleashing the Knowledge Economy*. New Delhi: Tata McGraw-Hill Pub.
- 6. National IPR Policy, Department of Industrial Policy & Promotion, Ministry of Commerce, GoI Complete Reference to Intellectual Property Rights Laws. (2007).
- 7. Case Studies of Policy Challenges from New Technologies, MIT Press

BIOSENSORS: PRINCIPLES AND APPLICATIONS COURSE CODE: 21MS2MB312 L-T-P: 3-0-0 CREDITS: 3	Course Objectives The course aims at providing a general and broad introduction to multidisciplinary field of Biosensor technology	 On successful completion of this course, students should be able to understand the clinical and nonclinical uses of biosensors as well as the concepts behind the reagent less biosensors development. It will familiarize students with the concept of molecular reorganization for biosensor development.: Types, characteristics, operating condition and applications The course will also give an insight into complete systems where biosensor can be used to improve our everyday life.

Unit	Topics Covered
Unit 1: Introduction 6 lectures	Overview of biosensor and applications: medicine, agriculture, bioproduction, and environment, Desired characteristics of biosensors: reliability, simplicity, cost, and related parameters, Application notes: operating conditions, calibration, positive and negative controls, safety.
Unit 2: Principle of molecular recognition 4 lectures	Molecular reorganization: Enzymes, Antibodies and DNA, Modification of bio recognition molecules for Selectivity and sensitivity, Fundamentals of surfaces and interfaces.
Unit 3: Types of Biosensors 10 lectures	Optical sensors-colorimetric/ fluorimetric/ luminometric sensors, Surface Plasmon Resonance (SPR) sensors, Electrochemical Sensors, Potentiometric Electrodes, Amperometric Electrodes, Conductometric Measurement. Bioluminescence biosensors, Microbial biosensors, Affinity biosensors, Immunosensors.
Unit 4: Biosensors for Clinical Analysis 4 lectures	Biosensors for personal diabetes management (Glucose, Galactose, Sensors) Noninvasive Biosensors in Clinical analysis and health care

Unit 4: Non-Clinical Applications of Biosensors 6 lectures	Applications in Agriculture, Food production, Environmental control and pollution monitoring.
Unit 5: Reagent less Biosensors 6 lectures	Reagent less Immunoelectrodes, biomolecule conformational modulated effects, Biosensors based on DNA conformation changes, Biosensors based on protein conformation changes
Unit 6: Applications of Nanomaterials in Biosensors 6 lectures	Nano-Materials in biosensors; Carbon based Nano Material, Metal oxide and nano particle, Quantum dots, Role of nano material in Signal Amplifications, Detection and Transducer Fabrication.

- 1. Zeynep. A, (2018) Biosensors and nanotechnology: applications in health care diagnostics, Wiley.
- 2. Prickril, B and Rasooly, A, (2017) Biosensors and Biodetection: methods and protocol Electrochemical, Bioelectronic, Piezoelectric, Cellular and Molecular Biosensors, Human Press-Springer Protocol.
- 3. Yoon, J. Y, (2016) Introduction to Biosensors: From Electric Circuits to Immunosensors, Springer Nature
- 4. Turner A.P.F, Karube I and Wilson G.S, (1987) Biosensors- Fundamentals and applications, Oxford Univ.Press.
- 5. Yang V.C. and T.T.Ngo, (2000) Biosensors and their Applications, Academic/Plenum Publishers.
- 6. Ashok Mulchandani and Kim R Rogers, (1998) Enzyme and Microbial bio sensors: Techniques and Protocols, Humana Press Totowa, NJ.
- 7. Turner A.P.F and Wilsons G.S, (1997) Biosensors: Fundamentals and Applications, Oxford Science Publications.

MICROBIAL TOXICOLOGY COURSE CODE: 23MS2MB311 L-T-P: 3-0-0 CREDITS: 3	To acquaint the students with the various toxin, their mechanism for toxicity and impact on human health. Scientific evaluation of various characteristics of toxin producing microorganisms, especially bacteria and fungi.	Students Learning outcomes Students should be able to: Acquire the fundamental concepts toxin producing microbes and their impact on human health Scientifically knowledge on structure-function of toxin Analyze and interpret the mechanism of toxicity to human cells Various diseases related to toxins Methods to detect toxins.
---	--	--

Unit	Topics Covered
Unit I Introduction to toxins and toxicology 2 lectures	Introduction to toxins A brief history of toxicology, Dose–response relationships Sources of toxic compounds, Movement of toxicants in the environment Exotoxin and Endotoxins
Unit II: Bacterial toxin 8 lectures	Bacillus Toxins- Anthrax Toxins: A Presentation, Toxin Entry, Lethal Toxin Cell Targets, Edema Toxin Cell Targets, Anthrax Toxin Effects During Infection: Critical Virulence Factors Anthrax Toxin Effects at the Early Stage: Immune System Paralysis, Anthrax Toxin Effect at the Late Stage: Host Killer, Burkholderia Toxins- Severity of Potential Soil Pathogens, Clinical Implications of Bacterial Exotoxin, structure Activity Relationship of Bacterial Toxins, Effect of Exotoxin (CLT) on Pathogenicity, Culture and Infection of Invasive Rodent Models, Effect of Exotoxin (CLT) on Virulence, Secretion of Bacterial Molecules Responsible for Virulence, Toxins Modulating the Mechanism of Action and Cellular Signaling, Clostridium Toxins- Introduction: Clostridium perfringens, Its Toxins, and Disease, Toxin Plasmids: Expression and Regulation, ETX Mechanism of Action with an Overview of Animal and Cell Culture Studies, Evidence for ETX Neurotoxicity and Emerging Links with Multiple Sclerosis. Prospects for Developing Vaccines and Therapeutics. Spore forming Bacteria and Their Binary Enterotoxins

Unit III: Bacterial toxin	Each anighia Taying Introduction Chica Taying Care Durthing
	Escherichia Toxins- Introduction, Shiga Toxins; Genes, Proteins, and the Mechanism of Toxicity, Environmental, Gut, and Bacterial
8 lectures	Growth Conditions. Enterotoxigenic Escherichia coli. STb (heat-
	stable toxin b) Toxin. Helicobacter Toxins- Introduction, <i>H. pylori</i>
	CagA Structure and Activities on Host Cells, Evidence of the Role
	of H. pylori CagA in Gastric Cancer. Listeria Toxins- Introduction,
	Listeriolysin O, Effects of LLO in the Host Organism,
	phospholipase, Listeriolysin S- Virulence at the Organism Level,
	and activity at the Cellular Level.
Unit IV: MYCOTOXINS	Introduction to Aspergillus Mycotoxin- Afaltoxin, Ochratoxin
AND MYCOTOXICOSIS	Introduction, Fusarium Mycotoxin- Zearalenone, Fumonisins, <i>Treicothecens</i> mycotoxin. Most significant mycotoxins and
12 lectures	mycotoxicosis in human and Animals- Afaltoxin B1, Ochratoxin A,
	Zearalenone, Fumonisins B1, Trcicothecens mycotoxin, Patulin,
	Vomitoxin or deoxynivalenol, T-2 toxin, Diacetoxyscirpenol,
	Monoacetoxyscirpenol, Diacetoxyscirpenol, Triacetoxyscirpenol, Escirpentril. Prevention, decontamination,
	detoxification and inactivation strategies.
Unit V: Method for Toxins	Detection of Bacterial Protein Toxins by Solid Phase Magnetic
detection	Immunocapture and Mass Spectrometry, Molecular Methods: Chip
6 lectures	Assay and Quantitative Real-Time PCR: In Detecting Hepatotoxic
	Cyanobacteria, Sensitive and Rapid Detection of Cholera Toxin-
	Producing, Ultrasensitive Detection of Botulinum Neurotoxins and Anthrax Lethal Factor in Biological Samples by ALISSA
	Determination of Aflatoxins B1, B2, G1, and G2in Foods and Feed
	Materials
Unit VI: Toxicity of Heavy	Factors Affecting Microbial Remediation of Heavy Metals.
Metals to Microorganisms	Mechanism of Microbial Detoxification of Heavy Metal- Bio
	Mechanism of Microbial Detoxification of Heavy Metal-Bio sorption Mechanism, Intracellular Sequestration, Intracellular
Metals to Microorganisms	Mechanism of Microbial Detoxification of Heavy Metal-Bio sorption Mechanism, Intracellular Sequestration, Intracellular Sequestration, extracellular Barrier of Preventing Metal Entry into Microbial Cell, Methylation of Metals, Reduction of heavy metals
Metals to Microorganisms	Mechanism of Microbial Detoxification of Heavy Metal-Bio sorption Mechanism, Intracellular Sequestration, Intracellular Sequestration, extracellular Barrier of Preventing Metal Entry into Microbial Cell, Methylation of Metals, Reduction of heavy metals ions by microbial cells. Bioremediation Capacity of
Metals to Microorganisms	Mechanism of Microbial Detoxification of Heavy Metal-Bio sorption Mechanism, Intracellular Sequestration, Intracellular Sequestration, extracellular Barrier of Preventing Metal Entry into Microbial Cell, Methylation of Metals, Reduction of heavy metals ions by microbial cells. Bioremediation Capacity of Microorganisms on Heavy Metals-Bacteria Remediation Capacity
Metals to Microorganisms	Mechanism of Microbial Detoxification of Heavy Metal-Bio sorption Mechanism, Intracellular Sequestration, Intracellular Sequestration, extracellular Barrier of Preventing Metal Entry into Microbial Cell, Methylation of Metals, Reduction of heavy metals ions by microbial cells. Bioremediation Capacity of
Metals to Microorganisms	Mechanism of Microbial Detoxification of Heavy Metal-Bio sorption Mechanism, Intracellular Sequestration, Intracellular Sequestration, extracellular Barrier of Preventing Metal Entry into Microbial Cell, Methylation of Metals, Reduction of heavy metals ions by microbial cells. Bioremediation Capacity of Microorganisms on Heavy Metals-Bacteria Remediation Capacity

- 2. Microbial Toxins: EditorsBrad Stiles, Alberto Alape-Girón, J. Daniel Dubreuil, Manas Mandal. Springer-Science Business Media B. V, 2018
- 3. Mycotoxins and mycotoxicosis in Animals and hman: Editors Alberto Gimeno and Maria Ligia Martins. Special Nutrients Inc., 2003
- 4. A Textbook of Modern Toxicology. Editors: Ernet Hodgson Wiley Publication, 2010

PROTEIN ENGINEERING COURSE CODE: 21MS2MB314 L-T-P: 3-0-0 CREDITS: 3	Course Objectives To introduce methods and strategies commonly used in protein engineering.	Students Learning outcomes Students should be able to: Understand the principles of protein engineering and different properties of the proteins for modification; Describe structure and classification of proteins; Analyze the structural and conformational changes using different spectroscopic techniques; Describe and use various approaches of protein engineering for modifying the proteins; Use of computational tools for protein engineering; Industrial applications of protein engineering with suitable case studies
---	---	---

TT :	m · c
Unit	Topics Covered
Unit 1: Introduction to protein engineering 6 lectures	Protein engineering – definition, applications; Features or characteristics of proteins that can be engineered (definition and methods of study) – affinity and specificity; Spectroscopic properties; Stability to changes in parameters as pH, temperature and amino acid sequence, aggregation propensities, etc. Protein engineering with unnatural amino acids and its applications.
Unit 2: Protein structure and Folding 4 lectures	Protein Structure – Primary, Secondary, Tertiary and Quaternary Structure, Ramachandran Plot, Protein folding, Protein function and structure-function relationship
Unit 3: Structural	Structural characterization of proteins, an overview of spectroscopic
Characterization of	techniques for the analysis of protein secondary and tertiary structure
Proteins	(UV and near-UV CD; Fluorescence; UV absorbance; ORD), An
8 lectures	overview of techniques for analysis of protein quaternary structure
	(X-Ray Crystallography, NMR Spectroscopy).
Unit 4: Approaches and Methodology for Protein engineering 12 lectures	Forces stabilizing proteins – Van der Waals, electrostatic, hydrogen bonding and weakly polar interactions, hydrophobic effects, Protein engineering approaches (Directed Evolution, Rational, Semirational), advantages and limitations. Rational design, prediction of the structure of enzyme variant, evaluation of the effect of mutations on enzyme structure and function. Directed evolution: Error-prone PCR, Cassette mutagenesis, Sitesaturation mutagenesis, DNA shuffling, StEP, RACHITT, RETT, SHIPREC, SCRATCHY.

	Screening and selection of mutants
Unit 5: Computational approaches 4 lectures	Computational approaches to protein engineering: sequence and 3D structure analysis, Data mining, Ramachandran map, Protein design, Directed evolution for protein engineering and its potential.
Unit 6: Case Studies and Examples 8 lectures	Examples of application of protein engineering to improve enzyme catalytic efficiency, stability and enantioselectivity. Engineering of Enzymes: Asparaginase, tyrosyl-tRNA synthase, Engineering of Hormones: Insulin; Engineering blood clotting factors: Factor VIII; Engineering humanized Antibodies

- 1 .Ed. T E Creighton, (1997), *Protein Structure: a Practical Approach*, 2nd Edition, Oxford university press.
- 2. Cleland and Craik, (2006), *Protein Engineering, Principles and Practice*, Vol 7, Springer Netherlands.
- 3. Arndt and Mueller, *Protein Engineering Protocols*, 1st Edition, Humana Press.
- 4. Ed. D E Robertson and J P Noel, (2004), *Protein Engineering Methods in Enzymology*, 388, Elsevier Academic Press.
- 5. Ed. Stefan Lutz and Uwe Bornscheuer, (2008), *Protein engineering handbook*. Wiley-VCH.
- 6. Ed. Frances Hamilton Arnold George Georgiou, (2003), *Directed evolution library creation: methods and protocols*. Humana Press.
- 7. J Kyte, (2006), Structure in Protein Chemistry, 2nd Edition, Garland publishers.

		T =:
COMPUTATIONAL	Course Objectives	Students Learning outcomes
SYSTEMS BIOLOGY	To enable students to	Students should be able to:
	understand, predict and	 The students will understand the
COURSE CODE:	ultimately control	holistic approaches of systems
23MS2MB411	functionalities of complex	1
	biological systems.	biology - combining acquisition,
L-T-P: 3-0-0	oreregical systems.	integration and management of
1-1-1.5-0-0		experimental data with computer
CDEDITS, 2		modeling and simulation.
CREDITS: 3		_
		 They will learn the designing
		Biocircuits to model the complex
		biological systems.
		They will also learn the
		1
		engineering aspects of controlling
		biological network parameters.
		· -

Unit	Topics Covered
Unit 1: Introduction to Systems biology and various network types 7 lectures	An introduction to Systems biology. A paradigm shift from components biology to systems biology. System and its properties. Types of biological networks and their respective characteristics. Comparison of bioinformatics, and other similar streams with systems biology and its progression and evolution towards synthetic biology.
Unit 2: Gene regulatory networks and simulation analysis 7 lectures Unit 3: Characteristics of Protein-protein interactions and signal transduction networks 7 lectures	Basic characteristics of gene regulatory networks, Computational representations and modelling methods of GRN/TRN biological Systems. LAC operon and GAL regulon models, Biocircuit designs and Petri nets. Basics of Protein-protein interactions (PPI) along with experimental and computational models. PPI networks. Signal Transduction Networks and Pathways, their biological characteristics and applications.
Unit 4: Detailed introduction of metabolic networks along with FBA 6 lectures	Basics of Metabolic pathways and Networks, Mass/Flux Balance Analysis (FBA). Stoichiometry matrix and analysis of pathways. Characteristics and applications of metabolic pathways.
Unit 5: Markup Languages used for the Systems biology model reconstructions 6 lectures	Introduction to HTML and XML. XML implementation towards Bioinformatics and systems biology: BioXML, SBML, CellML and their practical applications towards modeling and simulations of biological systems.

Unit 6: Introduction of various systems biology tools and databases 5 lectures	Interaction Networks, Online and offline tools and databases for SYSTEMS BIOLOGY- STRING, BIND, MINT, IPATH, Cytoscape, GeneGo, Gypasi, MetaCYC etc.
Unit 7: Introduction of Virtual cell, E-cell and other bio-electronic projects with case studies 4 lectures	Virtual cell, E-Cell and other bio-electronic projects and their respective applications in real life situations. Stem cell and vaccine based systems biology projects.

- 1. Eberhard O. Voit, Systems Biology: A Very Short Introduction, 2020, Oxford University Press, ISBN: 9780198828372
- 2. Eberhard O. Voit, A First Course in Systems Biology, 2018, Routledge & CRC Press, ISBN 9780815345688
- 3. A.J. Marian Walhout, Marc Vidal and Job Dekker, Handbook of Systems Biology, 2013, Elsevier, ISBN- 9780123859440
- 4. B.O. Palsson, Systems biology properties of reconstructed networks, 2006, Cambridge university press, Cambridge, New York, ISBN:
- 5. Werner Dubitzky, Francisco Azuaje, Artificial Intelligence Methods and Tools For Systems Biology, 2004, Springer, ISBN 9781402028595
- 6. Seetharaman Vaidyanathan, George G. Harrigan, Royston Goodacre, Metabolome Analyses: Strategies for Systems Biology, 2005, Springer, ISBN 9780387252407
- Z. Szallasi, J. Stelling, and V. Periwal, System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, 2006, Cambridge, MA, USA: MIT Press
 L. Opresko, J. M. Gephart, and M. B. Mann, Advances in Systems Biology, Advances in Experimental Medicine and Biology Volume 547, 2002, ISBN: 1461346959

EXPERIMENTAL MODELS IN MICROBIAL RESEARCH COURSE CODE: 21MS2MB412 L-T-P: 3-0-0 CREDITS: 3	Course Objectives To impart knowledge about different experimental animal models respective to infectious diseases and its secondary effects.	Students Learning outcomes Students should be able to: Understand the basics of drugs and their mechanism of action. Selection and handling of experimental animals for microbial research Develop and evaluate experimental animal models for respective diseases Analyze and interpret experimental data

Unit I: Drugs &	Introduction to antimicrobial agents. Anti-fungal agents, anti-viral
Microbes	agents, anti-protozoal agents, etc.
4 lectures	
Unit II:	Introduction to some common model organisms such as
Experimental	Caenorhabditis elegans, Silkworm (B. mori), Fruit fly (D.
Models	melanogaster), Zebrafish (D. rerio), Mouse (M. musculus), Rat,
Organisms	Guinea pig, rabbit, etc.
4 lectures	
Unit III:	Techniques of blood collection in laboratory animals – Introduction,
Regulation and	Animal welfare, Total blood volume, permanent cannulation, retro
handling of	orbital puncture, cardiac puncture, etc., Anesthesia of experimental
experimental animals	animals – Introduction, Local anesthesia, General anesthesia, routes of
4 lectures	anesthesia, etc. Euthanasia of experimental animals – Introduction,
	Physical and Chemical method for euthanasia of animals. Ethical
	Concern and regulation of animal use.

Unit IV:	Acute/chronic bacterial pneumonia models, Septicemia models, Skin
Animal models	and soft tissue infection models, Meningitis models, Urinary tract
in for microbial	infections models, Animal models of infectious endocarditis, Animal
infection	models of intraperitoneal infection, etc.
6 lectures	
Unit V:	Introduction to viral diseases and Experimental models of some
Animal Models	common Viral diseases such as Hepatitis, Dengue, Encephalitis,
of Viral Diseases	Influenza, SARS CoV, etc.
4 lectres	
Unit VI:	Overview of fungal infection and Animal models used to study fungal
Animal Models	infections such as Candidiasis, Aspergillosis, Blastomycosis,
of Fungal	Mucormycosis, Dermatophytoses, cryptococcosis, etc.
Infection	
4 lectures	
Unit VII:	Experimental study of tuberculosis, Animal models of chronic wound
Miscellaneous	care, Animal models of Malaria, Leishmaniasis, Microbiome and
models	Germ-Free – Animal Models for the study of GUT microflora, etc.
8 lectures	
Unit VIII:	
Experimental	Analgesic, anti-inflammatory, and anti-pyretic activity,
models for	Gastrointestinal tract –Ulcer, diarrhea, emesis, liver function,
Functional	etc.Models of eye inflammation, Metabolic Disorder, Learning and
assays	memory, Respiratory activity, Immunomodulatory etc.
8 lectures	

- 1. Drug Discovery and Evaluation: Pharmacological Assays, edited by Hans Gerhard Vogel, 3rd Edition, 2008, Springer Publisher.
- 2. Kaito C, Murakami K, Imai L, Furuta K. Animal infection models using non-mammals. Microbiol Immunol. 2020 Sep;64(9):585-592. doi: 10.1111/1348-0421.12834
- 3. Loría-Cervera EN, Andrade-Narváez FJ. Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo. 2014 Jan-Feb; 56(1):1-11. doi: 10.1590/S0036-46652014000100001. PMID: 24553602; PMCID: PMC4085833.
- 4. Zhao M, Lepak AJ, Andes DR. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem. 2016 Dec 15;24(24):6390-6400. doi: 10.1016/j.bmc.2016.11.008. Epub 2016 Nov 9. PMID: 27887963.

NANO-	Course Objectives	Students Learning outcomes:
BIOTECHNOLOGY	The course aims at	
	providing a general and	 On successful completion of this course,
COURSE CODE:	broad introduction to	students should be able to describe basic
21MS2MB413	multi-	science behind the properties of
	disciplinary field of	materials at nanometer scale, and the
L-T-P: 3-0-0	nanotechnology.	principles behind advanced experimental
CD TD TO C		and analytical and microscopic
CREDITS: 3		techniques for studying nanomaterials.
		■ It will familiarize students with the
		combination of the top-down approach
		of nanomaterial synthesis and also give
		understanding of nanomaterial
		characterization.
		■ The course will also give an insight into complete systems where nanotechnology
		can be used to improve our everyday
		life.

Unit	Topics Covered
Unit 1: Introduction to nanobiotechnology 6 lectures	Introduction to Nano-biotechnology; Concepts, historical perspective; Different formats of nanomaterial and applications with example for specific cases. Overview of current industrial applications.
Unit 2: Synthesis of nanomaterials 5 lectures	Method of preparation and properties of nanomaterial: Nanomaterial synthesis using top-down and bottom up approach. Physical Vapor Deposition, Chemical Vapor Deposition, Chemical Synthesis, Biological Synthesis.

Unit 3: Characterization of	Basic Characterization Technique, electron microscopy (TEM and
nanomaterial	SEM), Dynamic light Scattering (DLS), Atomic Force Microscopy
7 lectures	(AFM), NMR(Nuclear magnetic Resonance) and X-ray diffractometer (XRD)
Unit 4: Nano – films	Thin films; Colloidal nanostructures; Self Assembly, Nanovesicles;
2 lectures	Nanospheres; Nanocapsules and their characterization.
Unit 4: Nano – particles7 6 lectures	Nanoparticles for drug delivery, concepts, optimization of nanoparticle properties for suitability of administration through various routes of delivery, advantages, strategies for cellular internalization and long circulation, strategies for enhanced permeation through various anatomical barriers.
Unit 5: Applications	Nanoparticles for diagnostics and imaging (theragnostic);
of nano – particles	concepts of smart stimuli responsive nanoparticles, implications
6 lectures	in cancer therapy, nanodevices for biosensor development.
Unit 6: Nano – materials	Nanomaterials for catalysis, development and characterization of
5 lectures	nanobiocatalysts, application of nanoscaffolds in synthesis, applications of nanobiocatalysis in the production of drugs and drug intermediates.
Unit 7: Nano – toxicity 5 lectures	Introduction to Safety of nanomaterials, Basics of nanotoxicity, Models and assays for Nanotoxicity assessment; Fate of nanomaterials in different strata of environment; Ecotoxicity models and assays; Life Cycle Assessment, containment.

- 1. GeroDecher, Joseph B. Schlenoff, (2003); Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Wiley-VCH Verlag GmbH & Co. KGaA
- 2. David S. Goodsell, (2004); Bionanotechnology: Lessons from Nature; Wiley-Liss
- 3. Neelina H. Malsch (2005), Biomedical Nanotechnology, CRC Press
- 4. Greg T. Hermanson, (2013); Bioconjugate Techniques, (3rd Edition); Elsevier
- 5. Recent review papers in the area of Nanomedicine.

	1	techniques and process for routine analysis of various biotech and pharmaceutical products.	biotech industry
--	---	---	------------------

Unit	Topics Covered
Unit I Quality management 8 lectures	Evaluation of quality control, Quality Control & Quality Assurance, Using Quality Assurance for the Best Results; The Role of Inspection in Quality Control, Collecting Your Quality Data; Quality Models in business, Six Sigma Concept, Six Sigma tools, Continuous improvements and its applications, Lean concept for Process Improvements Ten Steps for Incorporating Quality into a New Product and/or Process; Quality Management: Practices, Tools, and Standards
Unit II Statistical quality control 8 lectures	Statistics Process control: control chart for variable and attributes, P charts C charts, Chebychew's in equations and normal distribution curve, Sampling plan and characteristics of OC curves,
Unit III Quality control in biotech and pharma industry 8 lectures	Quality Control techniques for routine analysis with HPLC: Quality control aspects of Pharmaceuticals and Food products, Quality control aspects of Bioactive natural products, QC Monoclonal antibody products QC rDNA products,

Unit IV Quality control in biotech and pharma industry 10 lectures	Quality control laboratory: Design of QC laboratory for chemical, instrumental and microbiological analysis. Good Practices in QC laboratory, Schedule L1, standardization of reagents, labeling of reagents, control, Samples, controls on animal house, data generation and storage, QC documentation, LIMS Environmental monitoring, setting of limits and its evaluation. Control of contamination and cross contamination. Stability Studies, ICH Guidelines, WHO Guidelines Waste disposal, disposal procedures and records, current regulations for waste disposal Contract manufacturing and analysis
Unit V Quality control of Raw material 8 lectures	QA Lot release, non-conforming material review, failure review, QC Lot release testing –chemical assays & bioassays QC Raw material testing, in-process testing, validation support QA Audit procedures and vendor certification Handling out-of-specification results

- 1. Fundamentals of Quality control and improvement by Ämitav Mitra A John Wiley & Sons, Inc., Publication, IV edition, 2016
- 2. Good Manufacturing Practices for Pharmaceuticals by Sidney H Willig, Marcel and Dekker
- 3. Quality Assurance in Environmental Monitoring by P. Quevauviller, Wiley VCH
- 4. Bioactive Natural Products: Quality Control & Standardization by V.K.Gupta, S.C. Taneja and B.D. Gupta, Studium Press LLC, U.S.A.

MOLECULAR DIAGNOSTICS & FORENSIC BIOLOGY

COURSE CODE: 24MS1BT211

L-T-P: 3-0-0 Credits: 3

MOLECULAR	Course Objectives	Student Learning Outcomes
DIAGNOSTICS &	The objectives of this course are to	Students should be able to
FORENSIC	sensitize students about recent advances	understand various molecular
BIOLOGY	in molecular and forensic biology	procedures which are based
COURSE CODE:	especially at molecular level. Major	on biological molecules and
24MS1BT211	objective of the course is to acquaint the	utilized for identification of
L-T-P: 3-0-0	student with modern aspects of	human diseases. Students
C 124 2	identification of diseases ranging from	
Credits: 3	common cold to cancer. The course also	can also utilize these as an
	has an objective to utilize the molecular	application for the _
	techniques employed for forensics.	investigation of crime.

Unit	Topics Covered
Unit I Biomolecules; their application in human Molecular diagnostics & forensic biology 4 lectures	Basics genetic markers (Prognostics and diagnostics markers) and their application in molecular diagnostics. DNA polymorphism and its role in human identity and clinical variability.
Unit II Diagnostic metabolomics 4 lectures	Metabolite profile for biomarker detection of the body fluids/tissues in various metabolic disorders by using Fluorescent <i>In Situ</i> Hybridization, Western blot and LCMS technological platforms.
Unit III Detection and identity of microbial diseases 4 lectures	Direct detection and molecular identification of pathogenic bacterial and viral pathogens. Genotypic markers of microbial resistance to specific antibiotics.
Unit IV Detection of inherited diseases 4 lectures	Exemplified by two inherited diseases for which molecular diagnosis has provided a dramatic improvement of quality of medical care: Fragile X Syndrome: Paradigm of new mutational mechanism of unstable triplet repeats, von-Hippel Lindau disease: recent acquisition in growing number of familial cancer syndromes.
Unit V Molecular oncology and its diagnostics 6 lectures	Detection of recognized genetic aberrations in clinical samples from cancer patients; types of cancer-causing alterations revealed by next-generation sequencing of clinical isolates; predictive biomarkers for personalized onco-therapy of human diseases such as chronic myeloid leukemia, colon, breast, lung cancer and melanoma as well as matching targeted therapies with patients and preventing toxicity of standard systemic therapies.

Unit VI	History of Forensic DNA Testing, Sample collection and preservation.
Forensic DNA Profiling	DNA Extraction Methods. DNA detection methods: Fluorescent Dyes
and Bioinformatics	and Silver-staining. Forensic DNA typing system – RFLP, Amp-RFLP.
10 lectures	STR. Mini STR. Mitochondrial DNA. Single Nucleotide Polymorphism.
	Microbial DNA testing, Non-Human DNA testing. Gender identification.
	Interpretation of the DNA typing results. Introduction to bioinformatics
	and its application in forensics, Major databases in bioinformatics for
	forensics, Sequence alignment, Phylogenetic analysis and related
	tools. Gene identification and prediction.
Unit VII	Methods of sterilization employ for serological work, Single diffusion immunoelectrophoresis, Two dimensional electrophoresis, Antihuman globulin serum inhibition test, passive heam-agglutination method, precipitin inhibition test, mixed agglutination method,
	sensitized latex particle method. Raising of Antisera, buffers and serological reagents. Lectins biology and its application in forensics.

- 1. Campbell, A. M., & Heyer, L. J. (2006). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco: Benjamin Cummings.
- 2. Brooker, R. J. (2009). Genetics: Analysis & Principles. New York, NY: McGraw-Hill. 2 21
- 3. Glick, B. R., Pasternak, J. J., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, DC: ASM Press.
- 4. Coleman, W. B., & Tsongalis, G. J. (2010). Molecular Diagnostics: for the Clinical Laboratorian. Totowa, NJ: Humana Press.
- 5. Hinchliff, S., Norman, S., Schober, J. (2015). Forensic Biology. CRC Press.