Course Code: 10M11EC114
Semester: M.Tech 1st Sem
Credits: 3
Contact Hours: L-3, T-0, P-0

Course Objectives
The objectives are to study

1. To bring both Circuits and System views on design together.
2. It offers a profound understanding of the design of complex digital VLSI circuits, computer aided simulation and synthesis tool for hardware design.

Course Outcomes
After studying this course the students would gain enough knowledge

1. To learn concept of design rules.
2. To bring both Circuits and System views on design together. It offers a profound understanding of the design of complex digital circuits.
3. Synthesis of digital VLSI systems from register-transfer or higher level descriptions in hardware design languages.
4. To be aware about the trends in semiconductor technology, and how it impacts scaling and performance.
5. Understanding a hardware design language such as VHDL in detail – syntax as well as how it works under the hood for simulation and synthesis. To gain enough knowledge to design any circuit using CMOS and write HDL code for any circuit.

Course Contents

<table>
<thead>
<tr>
<th>Unit</th>
<th>Topics</th>
<th>References (chapter number, page no. etc)</th>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Basic MOS transistors, Enhancement mode transistor action, Depletion mode transistor action, nMOS fabrication, CMOS fabrication, Drain to source current I_{ds} versus voltage V_{ds} relationships (Non saturated region, Saturated region), MOS transistor transconductance g_m and output conductance g_{ds}, figure of merit, MOS resistance and capacitance, MOS transistor circuit model</td>
<td>Kang: Chapter 3</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>nMOS inverter, Determination of pull up and pull down ratio for an nMOS inverter driven by another n MOS inverter, CMOS inverter, DC Characteristics of the CMOS Inverter, Inverter Switching Characteristics, Power Dissipation, DC</td>
<td>Kang: Chapter 4, 5</td>
<td>8</td>
</tr>
</tbody>
</table>
Characteristics: NAND and NOR Gates, NAND and NOR Transient Response, Analysis of Complex Logic Gates, Gate Design for Transient performance, MOS circuit design process (STICK DIAGRAMS)

4 Transmission Gates, Gate Delays, Driving Large Capacitive loads, Logical Efforts, Mirror Circuits, Pseudo-nMOS, Tri State Circuits, Clocked CMOS, Dynamic CMOS Logic Circuits, Dual-Rail Logic Networks, BiCMOS

General VLSI System Components: Gates Adders (Half and Full), Subtractors (Half and Full), Multipliers, Binary Decoders, Equality Detectors and Comparators, Priority Encoder, Shift and rotation Operation, Latches, D Flip-Flop, Registers

System Specification using SPICE: By programming and by circuit level, Gates (using Diodes, BJT and CMOS)

Evaluation Scheme
1. Test 1: 15 marks
2. Test 2: 25 marks
3. Test 3: 35 marks
4. Internal Assessment: 25 marks
 - 10 Marks: Class performance & Assignments
 - 10 Marks: Quizzes
 - 5 marks: Attendance

Text Books

Reference Books

Web Resources
1. URL1: http://nptel.ac.in/courses/117106093/
2. URL2: http://nptel.ac.in/courses/Webcourse-contents/IIT-Bombay/VLSI%20Design/Course%20Objective.html