10B17Cl407: Microprocessors and Controllers Lab

Course Credit: 1 Semester: IV Objective:

At the conclusion of the course, following learning objectives are expected to be achieved: The lab work and homework portions of the course are intended to help you apply your understanding,

- 1. to develop, implement, and debug 8086 assembly language programs that meet stated specifications.
- 2. to understand and be able to explain bus transactions, memory organization and address decoding, basic I/O interfaces and port addressing.
- 3. to understand how to control components of a computer system through the use of hardware and software interrupts.
- 4. to lay a foundation for pursuing some additional career options.

Learning Outcomes:

- 1. You will increase your proficiency with using assembler language, MASM.
- 2. You will know how to access service-functions provided in BIOS firmware.
- 3. You will gain practical experience in programming peripheral I/O devices.
- 4. You will acquire the background for understanding next-generation CPUs.
- 5. You will learn a microprocessor programming model at a level that enables you to write assembly language programs for the processor meeting given specifications.
- 6. You will learn concepts associated with interfacing a microprocessor to memory and to I/O devices.
- 7. You will learn how to control components of a microprocessor based system though the use of interrupts.

List of Experiments

S NO	Topics
1	Using Debug
2	Assembly Progrm structure for 8086 using MASM611
3	Data movment Instructions
4	Program Memory Addressing
5	Stack Memory programming
6	String I/O
7.	Arithmatic Operations
8.	File Operations
9.	I/O Interface Programming
10	Coprocessor programming

References

- 1. The Intel Microprocessor 80x86, Pentium, Pentium Pro processor, Pentium II Pentium III, Pentium IV Architecture, Programming, and Interfacing by Berry B.Brey, Eighth Edition, Prentice Hall, 2009. ISBN 978-81-317-2622-8.will be used as the main text book, however the inputs will be supplemented with information from elsewhere wherever the same is required.
- 2. "The 8051 microcontroller" by Kenneth Ayala is recommended for 8051 only.
- 3. Yu-cheng Liu, Glenn A. Gibson, "The 8086/8088 Family Architecture, Programming & design", Second Edition, PHI.
- 4. Douglas Hall, "Microprocessors & Interfacing, Programming & Hardware", 2nd Edn. Tata McGraw Hill.
- 5. Kenneth Ayala "The 8086 microprocessor programming and Interfacing the PC".
- 6. Tom Shanley, <u>Protected Mode Software Architecture</u>, Addison-Wesley (1996), ISBN 0-201-55447-X .

Evaluation Scheme:

1.	Mid Term Exam (Viva and Written Exam)	20	
2.	End term Exam (Viva and Written Exam)	30	
3.	Lab Records	5	
4.	Regular Assessment		
	(Quality and quantity of experiment performed,		
	Learning laboratory skills, Attendance etc.)	30	
5.	Project	15	
_			

100

Total