2012 14th International Conference on Modelling and Simulation

Load Balancing of Nodes in Cloud Using Ant Colony Optimization

Kumar Nishant, Pratik Sharma, Vishal Krishna,
Chhavi Gupta and Kunwar Pratap Singh
Department of CSE and ICT,

Jaypee University of Information Technology,
Solan-173234, Himachal Pradesh, India

Abstract—In this paper, we proposed an algorithm for load
distribution of workloads among nodes of a cloud by the
use of Ant Colony Optimization (ACO). This is a modified
approach of ant colony optimization that has been applied
from the perspective of cloud or grid network systems with the
main aim of load balancing of nodes. This modified algorithm
has an edge over the original approach in which each ant
build their own individual result set and it is later on built
into a complete solution. However, in our approach the ants
continuously update a single result set rather than updating
their own result set. Further, as we know that a cloud is the
collection of many nodes, which can support various types of
application that is used by the clients on a basis of pay per
use. Therefore, the system, which is incurring a cost for the
user should function smoothly and should have algorithms that
can continue the proper system functioning even at peak usage
hours.

Keywords-Ant colony optimization; Cloud computing; Grid
networks; Load balancing.

I. INTRODUCTION

With the increasing popularity of cloud computing, the
amount of processing that is being done in the clouds is
surging drastically. A cloud is constituted by various nodes
which perform computation according to the requests of the
clients. As the requests of the clients can be random to
the nodes they can vary in quantity and thus the load on
each node can also vary. Therefore, every node in a cloud
can be unevenly loaded of tasks according to the amount
of work requested by the clients. This phenomenon can
drastically reduce the working efficiency of the cloud as
some nodes which are overloaded will have a higher task
completion time compared to the corresponding time taken
on an under loaded node in the same cloud. This problem
is not only confined only to cloud but is related with every
large network like a grid, etc. In this paper, we propose an
efficient algorithm, based on ACO for better distribution of
workload among the nodes of a cloud.

ACO has been previously used by researchers in grid
computing for addressing load balancing [11], job schedul-
ing [10] and related problems. Therefore, efficient use of
this algorithm will contribute to better working of each of
these large networks and help in the better utilization of
resources available. As availability of resources is a major

978-0-7695-4682-7/12 $26.00 © 2012 IEEE
DOI 10.1109/UKSim.2012.11

Nitin and Ravi Rastogi
Department of CSE and ICT,
Jaypee University of Information Technology,
Solan-173234, Himachal Pradesh, India

hindrance for the growth of cloud in countries like India,
these algorithms would help in better utilization of available
resources and expanding cloud at a much lower cost by
saving the resources cost at each node. These types of
algorithm can also be utilized by large organizations who ask
users to donate extra CPU cycles for their own processing
[18].

The rest of the paper is as follows: Section II provides
the survey on the previous algorithms. Section III and IV
explains the concepts of cloud computing and ant colony
optimization. Section V and VI explains the proposed al-
gorithm and pheromone updation. Section VII explains the
pseudocode of the proposed algorithm. Section VIII explains
the difference between the existing and proposed algorithms
followed by the conclusion and references. We have also
provided the pseudocode of our proposed algorithm.

II. SURVEY-PREVIOUS ALGORITHMS

In previous works, the researchers have used the concept
of ACO to build upon a Load balancing solution set within
nodes of a cloud system [1]. The solution set was continu-
ously updated by the ants pheromone trails, which move in
iteration in the system. In this work the ants uses the basic
pheromone updating formula and node selection formula of
the ACO to distribute evenly the work loads of nodes in a
cloud.

For efficient load balancing of work in cloud, tier-wise
distribution of nodes is also suggested [4], in this the nodes
are distributed in three tier structure such that the work is
properly distributed among the nodes. In this hierarchy the
1st level (Top-level) nodes are used for the proper distribu-
tion of work among the nodes of 2nd level. Simultaneously
the 2nd level distributes the work logically among the 3rd
level nodes, which in turn-process their part of work. Thus,
this system ensures the proper distribution of load among
all levels.

The researchers around the globe have been working on
the concept of load balancing of nodes in a networked
architecture like a cloud, grid, etc. using the principles
of Ant Colony Optimization. In one of these studies [5],
an algorithm for node balancing suggested that the ants
procreate at node level when need arises, and simultaneously

2012 14th International Conference on Modelling and Simulation

~

—

&

Figure 1. A Cloud

they commit suicide when their task is completed. In this
algorithm the ant care for every node they visit and record
their data for future decision making. In an another appli-
cation of ant colony in grid computing a balanced approach
of job scheduling called BACO was suggested [15]. The
work aimed at reducing the computation time of each job
execution in a grid network by considering the resource
status and the size of the given job, the algorithm chooses
optimal resources to process the submitted jobs by applying
the local and global pheromone update technique to balance
the system load.

In addition to this, in a relevant work, the concepts of
ACO were applied in a more practical way [17] where
the pheromone values were updated by adding a prize,
punishment and load balancing coefficient to the original
values. The value of pheromones were updated after job
completion in such a way that if job was completed suc-
cessfully, the pheromone values were updated by the prize
coefficients whereas if vice-versa they were updated by the
punishment coefficient. In all these previous algorithms there
have been many shortcomings in application of ACO, like
synchronizing ant movements for optimum data balancing,
as properly moving ants would provide an efficient and better
solution. We would discuss such algorithm in following
sections.

III. CLoUD COMPUTING

Cloud computing is based on several other computing
research areas such as HPC, virtualization, utility computing
and grid computing. The improved computer hardware’s
and internet bandwidth has contributed immensely to the
growth of cloud computing in today’s world. Broadly the

Food MNest

Figure 2. Modification in ants path upon encountering an obstacle

| Initialize Pheromone table, ants I

| Declare a Threshold level for nodes I

Ants move through nodes

Is
timer[ant]
>Counter

Is the load
on node <
threshold
NO

Traverse to the node
with minimum FP.

Update pheromane
tables of both the nodes

Traverse to the node
with maximum TP

Update pheromone
‘tables of both the nodes

Is the
Node

Overload?

Is the Node

NO
— underload?

Reassign resources

Reassign resources

Figure 3. Flowchart

cloud is treated as service oriented approach and is classified
among three popular types of service: Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-
as-a-Service (SaaS) [12,13]. Currently in cloud computing
many nodes come together to provide the services to the
users.

The fig. 1 above gives a brief idea about the cloud In
the cloud system, the users can access the applications

2012 14th International Conference on Modelling and Simulation

faster with a good internet connection. There are many
cloud computing service providers (CCSP) like-azure, etc.
As these CCSP host the contents in form of applications on
their nodes they charge their customers on the basis of data
utilization. So, main drawback of cloud lies in the fact that
if the service providers gets slow due to traffic overload or
any other factors the customers would be more inclined to
switch to other service providers. Therefore, efficiency is a
major factor for the performance of cloud and an area of
focus for these CCSP. One of the most popular application
on cloud in wireless area is Apple’s App store [14] which
is creative and as well as popular and it started a culture
of applications on software, and has been followed up by
Microsoft, Google, etc.

IV. ANT COLONY OPTIMIZATION

ACO is inspired from the ant colonies that work together
in foraging behavior. In fact the real ants have inspired
many researchers for their work [6,8], and the ants approach
has been used by many researchers for problem solving in
various areas. This approach is called on the name of its
inspiration ACO. The ants work together in search of new
sources of food and simultaneously use the existing food
sources to shift the food back to the nest.

The ethologists were jeopardized for many years as they
wondered how even a blind ant was able to follow its fellow
ants and exactly reached the food sources. They found that
the ants leave a pheromone trail upon moving from one
node to another. By following the pheromone trails, the ant
subsequently came to the food sources. The intensity of the
pheromone can vary on various factors like the quality of
food sources, distance of the food, etc. The ants use these
pheromone trails to select the next node. The ants can even
modify their paths upon encountering any obstacles in their
path. Figure 2, gives a brief idea about this scenario. This
phenomenon of the ants was used in many algorithms for
optimization where the ants follow each other through a
network of pheromone paths. The ants upon traversal from
one node to another update the pheromone trail of that path,
so a path becomes more feasible if more ants traverse upon
it. Paths that have the highest pheromone intensity have
the shortest distance between the point and the best food
source. The movements of these ants independently update
a solution set.

The Traversal of ants in this system is generally of two
types:

1) Forward movements-In this type of movement the ants
move for extracting the food, or searching for the food
sources.

2) Backward movements-In this type of movements the
ants after picking up food from the food sources
traverse back to the nest for storing their food.

The ACO is a unique algorithm for some of the reasons
like the optimum solution is built not by a single entity but

various entities, which traverse the length and breadth of the
network and then these individually build upon a solution.
Many researchers [9] to improve upon the results have also
improvised upon the pheromone updating phenomenon of
the ACO. It has been used by the researchers to improve
upon various tasks such as task scheduling or optimizations
in satellite networks [7].

V. PROPOSED ALGORITHM

In our paper, the ACO is used for load balancing. The
approach aims at efficiently distribution of the load among
the nodes and such that the ants never encounter a dead end
for movements to nodes for building an optimum solution
set. In our algorithm, first a Regional load balancing node
(RLBN) [3] is chosen in a CCSP, which will act as a head
node. We would be referring to the RLBN as head node
in the rest of the paper. The selection of head node is not
a permanent thing but a new head node can be elected if
the previous node stops functioning properly due to some
inevitable circumstances. The head node is chosen in such
way that it has the most number of neighboring nodes, as
this can help our ants to traverse in most possible directions
of the network OF CCSP.

The ants in our proposed algorithm will continuously
originate from the Head node. These ants traverse the width
and length of the network in such a way that they know
about the location of underloaded or overloaded nodes in
the network. These Ants along with their traversal will be
updating a pheromone table, which will keep a tab on the
resources utilization by each node. We also proposed the
movement of ants in two ways similar to the classical ACO,
which are as follows:

1) Forward movement-The ants continuously move in the
forward direction in the cloud encountering overloaded
node or under loaded node.

2) Backward movement-If an ant encounters an over-
loaded node in its movement when it has previously
encountered an under loaded node then it will go
backward to the under loaded node to check if the
node is still under loaded or not and if it finds it still
under loaded then it will redistribute the work to the
under loaded node. The vice-versa is also feasible and
possible.

The main task of ants in the algorithm is to redistribute
work among the nodes. The ants traverse the cloud network,
selecting nodes for their next step through the classical
formula given below, where the probability Py of an ant,
which is currently on node r selecting the neighboring node
s for traversal, is:

Py(r,s) = e, 9)lntr. 5)17)

where,

2012 14th International Conference on Modelling and Simulation

r = Current node,

s = Next node,

7 = Pheromone concentration of the edge,

1 = The desirability of the move for the ant (if the move is
from an under loaded node to overloaded node or vice-versa
the move will be highly desirable),

B = Depends upon the relevance of the pheromone con-
centration with the move distance.

However, with continuously originating ants at an interval
of At, the overload incurred by network would increase as
the number of paths followed by the ants would increase so
would the cost for their maintenance and thus the network
performance would take a beating. Therefore, we would
keep their numbers in a limit [15]. We can keep their
numbers in a limit by setting a suicide timer on the ant,
which when reaches zero the ant will terminate itself. The
selection of timer value would depend on the size and
number of nodes in the network. The overload would depend
too much on the interval At, the smaller the overload larger
the overhead and vice-versa. However, higher the number
of ants more frequent would be the data changes and load
balancing and thus network efficiency. For this reason, if
we could limit the number of ants in the network for a good
trade-off between the need to keep collecting fresh data and
reduce variance, and the need to avoid congestion of the ants
as well.

VI. PHEROMONE UPDATION

The ant will use two types of pheromone for its move-
ment. The type of pheromone being updated by the ant
would signify the type of movements of the ant and would
tell about the kind of node the ant is searching for. The two
types of pheromones updated by the ants are as follows:

1) Foraging Pheromone (FP)-In a typical ACO the
ant uses foraging pheromones to explore new food
sources. In our algorithm the ant would lay down
foraging pheromone after encountering under loaded
nodes for searching overloaded nodes. Therefore, after
an ant comes up to an under loaded node it will try to
find the next path through foraging pheromone. The
formula [19-22] for updating this pheromone would
be:

FP(t+1) = (1 - Beoa) FP(t) + Y JAFP ()
k=1

where,

Beva = Pheromone evaporation rate,

FP = Foraging pheromone of the edge before the
move,

FP(t 4+ 1) = Foraging pheromone of the edge after
the move,

AFP = Change in the F'P.

2) Trailing Pheromone (TP)-In a typical ACO the ant

uses trailing pheromone to discover its path back to
the nest.
However, in our algorithm the ants would use this
to find its path to the under loaded node after en-
countering overloaded node. Therefore, after an ant
encounters an overloaded node it will try to trace back
the under loaded node through the trailing pheromone.
The formula [19-22] for updating this pheromone
would be:

n

TP(t+1) = (1 - Bea) TP(t) + Y ATP (3)
k=1

where,

Beva = Pheromone evaporation rate,

T P = Tracing pheromone of the edge before the move,
TP(t+ 1) = Tracing pheromone of the edge after the
move,

ATP = Change in the T'P.

Therefore, the ants use these trails according to the kind
of nodes they encounter.

The main aim of the two types of pheromone updation
is to classify the ants according to the types of nodes they
are currently searching for. The ants after originating from
the head node, by default follow the Foraging pheromone,
and in the process, they update the FP trails according to the
formula. After coming upon an overloaded node they follow
the Trailing Pheromones and simultaneously update the TP
trails of the path. After reaching an underloaded node of
the same type they update the data structure so as to move
a particular amount of data from the overloaded node to
under loaded node. Ants then select a random neighbor of
this node, and if they encounter an underloaded node they
start following the FP to trace an overloaded node, therefore
they repeat the same set of tasks repeatedly in a network to
improve the network performance.

While following on the TP upon encountering an under-
loaded node the ants will store information about the node
in list which would include data like utilization ratio, free
space and current tasks which can be used by the system
to configure the best overloaded nodes suitable whose tasks
could be relocated to these nodes and these will be decided
by the factors like distance between the two nodes in
question and the tasks which have to be relocated thus
influencing the decision of load balancing. The tasks, which
will be relocated, will be decided according to the already
existing tasks at the underloaded node so that there be no
clashes of interests. After each successful relocation of data
between nodes the ants timer would be checked and if zero
the particular ant would be terminated.

2012 14th International Conference on Modelling and Simulation

VII. PSEUDOCODE

for(i=0; i<totalnodes; i++)

{

for(j=0; j<totalnodes; j++)

{

if(i&j == neighbouring nodes)
Pheromone table[][] = assign value;

1

destinationnode=random (from_neighbouring_nodes
_of_headnode)

antoriginates(headnode)

antmoves(headnode, destinode)
if(load[destinode]>=threshold) {

do{

min=999999;

diff=0;

for(i=0; i<all neighbouring nodes of current node; i++) {
if((load[i] < threshold)& & (diffjthreshold-load[i])) {
nextnode=i;

flag=1;

diff=threshold-load[i]; } }

if(flag==0) {

for(i=0; i<all neighbouring nodes of current node; i++) {
if(tp[i]<min) {

min=tp[i];

nextnode=i;} } }

antmoves(currentnode, nextnode);

tpupdate(curentnode, nextnode);

currentnode=nextnode;

}while(load[currentnode] < threshold)
redistributeload(destinode, currentnode);

}

else

{

do {

max=0;

diff=0;

for(i=0; i<all neighbouring nodes of current node; i++) {
if((load[i]>threshold)& & (diff < threshold-load[i]))

{

nextnode=i;

flag=1;

diff=threshold-load[i]; } }

if(flag==0) {

for(i=0;i<all neighbouring nodes of current node;i++) {
if(fp[i]>max) {

max=fp[i];

nextnode=i; } } }
fpupdate(curentnode,nextnode);
currentnode = nextnode;
}while(load[currentnode] < threshold)

redistributeload(destinode, currentnode);

}

VIII. COMPARISON

Table I
TABLE UNDER CLASSICAL ALGORITHM

Nodes| A B C D

AO) | - L L H

B(O) | L - L H

CM) | L L - H

DU) | H H H -
Table 11

TABLE UNDER MODIFIED ALGORITHM

Nod T.P. (0—=U) FP. (U—=0)

odes—x B C D A B C D
AO) | - L M 0 - L L L
BO) | L B M 3 L - L L
cM) | L L B 3 M M B L
D@U) | L L L 3 3 M B

The Tables (1) and (2) shown above describe a situation
of a cloud of nodes with varying loads. Their most frequent
load type is denoted in the bracket (i.e. Overloaded-0,
Medium loaded-M, Under loaded-U) and simultaneously
the calculated pheromone table which indicates the level of
particular pheromone type (i.e. High-H, Low-L, Medium-
M) between corresponding nodes. Comparison of both these
algorithms in normal situation would give similar results but
our algorithm is modified for special situations which would
ensure smooth functioning of the cloud. For example in a
situation where the load type of node B is reversed that is
the node becomes under loaded from its standard overloaded
state, in the classical model the pheromone trails of node B
is strong only with D which would make the most probable
next state after B as D even in this reversed situation.

However, in our approach when a node is changed from an
overloaded to an under loaded node the ants start to follow
Foraging Pheromone instead of Trailing Pheromone and they
simultaneously start to follow Trailing Pheromone instead
of Foraging Pheromone when the node is changed to an
overloaded state from an under loaded state. By, following
this approach in this case the most likely state after B is not
D and could be from any of the 3 states(refer to the table).

Therefore, in general it could be stated about the standard
algorithm that after reversal of node types the ants traversing
from now under loaded nodes would traverse to then under
loaded nodes only which still could be under loaded and
similarly for the overloaded nodes. But they are required
to traverse to the opposite kind of nodes in both these
cases. This task can be achieved from our modified approach
which would make sure that the ants traversing from now
under loaded node make use of the F.P. which would be

2012 14th International Conference on Modelling and Simulation

unbiased and would provide a greater chance of traversing to
a overloaded node than compared to the previous approach.
This aspect is the most important feature of this modified
algorithm, and could be utilized in the situations in which
the type of load on nodes can vary and thus not affecting the
efficiency of ants with which they chose the opposite types
of nodes.

IX. CONCLUSION

This is a modified approach of ant colony optimization
that has been applied from the perspective of cloud or grid
network systems with the main aim of load balancing of
nodes. The main benefit of this approach lies in its detections
of overloaded and underloaded nodes and thereby perform-
ing operations based on the identified nodes. This simplistic
approach elegantly performs our task of identification of
nodes by the ants and tracing its path consequently in search
of different types of nodes. We have used the same concepts
of Ant colony optimizations and have only modified the
concepts where forward and trailing pheromones are used
according to our convenience.

The way in which ants are created and their functionalities
according to the pheromones trails and node encountered is
clearly visible from the segment of pseudocode provided
in the appendix. This modified algorithm has an edge over
the original approach in which each ant build their own
individual result set and it is later on built into a complete
solution.

However, in our approach the ants continuously update
a single result set rather than updating their own result
set. In this way, the solution set is gradually built on and
continuously improved upon rather than being compiled only
once in a while. The other advantage of the approach lies
in the fact that the task of each ant is specialized rather
than being general and the task depends on the type of first
node that was encountered whether it was overloaded or
underloaded.

REFERENCES

[1] S. Banerjee, I. Mukherjee and P.K. Mahanti, Cloud Comput-
ing Initiative using Modified Ant Colony Framework, World
Academy of Science and Technology, 56, pp. 221-224, 2009.

[2] Y. Li, A Bio-inspired Adaptive Job Scheduling Mechanism
on a Computational Grid, International Journal of Computer
Science and Network Security, 6(3B), pp. 1-7, 2006.

[3] Z. Zhang and X. Zhang, A Load Balancing Mechanism Based
on Ant Colony and Complex Network Theory in Open Cloud
Computing Federation, Proceedings of the 2nd International
Conference on Industrial Mechatronics and Automation, pp.
240-243, 2010.

[4] S.C. Wang, K.Q. Yan, W.P. Liao and S.S. Wang, Towards a
Load Balancing in a Three-level Cloud Computing Network,
Proceedings of the 3rd IEEE International Conference on
Computer Science and Information Technology, pp. 108-113,
2010.

[5] M. Salehi and H. Deldari, Grid Load Balancing using an
Echo System of Intelligent Ants, Proceedings of the 24th
IASTED International Conference on Parallel and Distributed
Computing and Networks, pp. 47-52, 2006.

[6] M. Dorigo, V. Maniezzo and A. Colorni, Ant System: Opti-
mization by a Colony of Cooperating Agents, IEEE Transac-
tions on Systems, Man, and Cybernetics, PP. 29-41, 1996.

[71 C.W. Chiang, Y.C. Lee, C.N. Lee and T.Y. Chou, Ant Colony
Optimization for Task Matching and Scheduling, IEE Proceed-
ings on Computers and Digital Techniques, 153 (6), pp. 373-
380, 2006.

[8] M. Dorigo, M. Birattari and T. Stutzle, Ant Colony
Optimization-Artificial Ants as a Computational Intelligence
Technique, IEEE Computational Intelligence Magazine, pp. 1-
12. 2006.

[9] J. Sun, S. Xiong and EM. Guo, A New Pheromone Updating
Strategy In Ant Colony Optimization, Proceedings of the In-
ternational Conference on Machine Learning and Cybernetics,
pp. 620-625, 2004.

[10] K.u Ruhana, K. Mahamud, H. Jamal and A. Nasir, Ant
Colony Algorithm for Job Scheduling in Grid Computing,
Proceedings of the Fourth Asia International Conference on
Mathematical/Analytical Modelling and Computer Simulation,
pp. 40-45, 2010.

[11] H. Jamal, A. Nasir, K. Ruhana, K. Mahamud and A.M. Din,
Load Balancing Using Enhanced Ant Algorithm in Grid Com-
puting, Proceedings of the Second International Conference
on Computational Intelligence, Modelling and Simulation, pp.
160-165, 2010.

[12] C. Gong, J. Liu, Q. Zhang, H. Chen and Z. Gong, The
Characteristics of Cloud Computing, Proceedings of the 39th
International Conference on Parallel Processing Workshops,
pp. 275-279, 2010.

[13] http://searchcloudcomputing.techtarget.com
[14] http://www.techsmith.com/morae/whitepaper/ux20.asp

[15] R.A. Arnous, H.A. Arafat and M.M. Salem, Improving the
Load Balancing within the Data Network via Modified AntNet
Algorithm, Proceedings of the 5th International Conference
on Information and Communication Technology, pp. 189-195,
2007.

[16] R. Chang, J. Chang and P. Lin, Balanced Job Assignment
Based on Ant Algorithm for Grid Computing, Proceedings
of the IEEE Asia-Pacific Services Computing Conference, pp.
291-295, 2007.

[17] H. Yan, X. Shen, X. Li and M. Wu, An Improved Ant
Algorithm for Job Scheduling in Grid Computing, Proceedings
of the International Conference on Machine Learning and
Cybernatics, 5, pp. 2957-2961, 2005.

[18] http://boinc.berkeley.edu/

2012 14th International Conference on Modelling and Simulation

[19] W. Ngenkaew, S. Ono, and S. Nakayama, Ant-Based Clus-
tering with Multiple Deposited Pheromones and Simple Ant
Memory, Proceedings of the 10th IASTED Int. Conf. on
Intelligent Systems and Control, USA, 2007, pp. 252-256,
2007.

[20] W. Ngenkaew, S. Ono, and S. Nakayama, The Deposition of
Multiple Pheromones in Ant-Based Clustering, International
Journal of Innovative Computing, Information and Control,
4(7), pp. 1583-1593, 2008.

[21] W. Ngenkaew, S. Ono, and S. Nakayama, Multiple
Pheromone Deposition in Ant-Based Clustering as an Ant
Foraging Concept, Proceedings of the 3rd IASTED Int. Conf.
on Advances in Computer Science and Technology, Thailand,
pp. 432-436, 2007.

[22] W. Ngenkaew, S. Ono and S. Nakayama, Pheromone-Based
Concept in Ant Clustering, Proceedings of 2008 3rd Inter-
national Conference on Intelligent System and Knowledge
Engineering, pp. 308-312, 2008.

