LINEAR INTEGRATED CIRCUITS (Core Subject)

Course Code:	17B11EC511	Semester:	Semester 5 th , B. Tech (ECE)
Credits:	4	Contact Hours:	L-3, T-1, P-0

Course Objective

- 1. Acquire knowledge about basic building blocks of an operational amplifier and its terminal characteristics.
- 2. Acquire knowledge about linear and nonlinear circuits and their applications.
- 3. Foster ability to identify basic requirements for designing any application using linear integrated circuits.
- 4. Foster ability to understand the use of linear integrated circuits in commercial and industrial applications.

Course Outcomes

- 1. Ability to understand the terminal characteristics of op-amps and design /analyze fundamental circuits based on op-amps.
- 2. Understanding of various parameters and interpretation of data sheets for Op-Amp.
- 3. Ability to analyze and design various applications like amplifiers, active filters, wave generators, wave shaping circuits, A/D and D/A convertors using Op-Amp.
- 4. Design and analysis of various applications using 555 timer.

Course Contents

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Introduction to Op-Amp and its characteristics. Linear Integrated Circuits Differential Amplifiers Basic of Differential Amplifier, Transistorized differential Amplifier, Configurations of Differential Amplifier, Analysis of Dual Input Balanced Output Differential Amplifier, Constant Current Bias, Current Mirror Circuit, Cascading of Differential Amplifiers.	Chapter 1, 2 & 3: OP-AMPS & Linear Integrated Circuits. Fourth Edition R A Gayakwad	7
2.	Op-Amp characteristics and frequency response Op –Amp packaging type, pin configuration, Op-Amp basics, Op-Amp specifications, DC offset parameters, Frequency parameters, Unit	Chapter 4 & 5: OP-AMPS & Linear Integrated Circuits. Fourth Edition R A Gayakwad	5

	specifications, offset voltages and		
	currents, virtual Ground, slew rate,		
	CMRR, PSRR, Gain bandwidth product		
	etc.		
3.	General linear applications.	Chapter 6	
	DC & AC Amplifiers, Peaking	OP-AMPS & Linear	
	Amplifier, Summing, Scaling and	Integrated Circuits.	8
	Averaging amplifier, Instrumentation	Fourth Edition R A	
	Amplifier, Voltage-to-Current Converter,	Gayakwad	
	Current to-Voltage Converter, The		
	Integrator, The Differentiator, Log and		
	Antilog Amplifier, Peak Detector,		
	Precision Rectifiers, Comparator, Zero		
	Crossing Detector, Schmitt Trigger,		
	Sample and Hold Circuit, Clippers and		
	Clampers, A/D and D/A Converters.		
4.	Active Filters	Chapter 7	6
	Butterworth Filters, Band-Pass Filters,	OP-AMPS & Linear	
	Band Reject Filters, All Pass Filters,	Integrated Circuits.	
	Universal Active Filter.	Fourth Edition R A	
		Gayakwad	
5.	Wave Shaping Circuits	Chapter 8	
	Multi-vibrators (Astable, Mono-stable,	OP-AMPS & Linear	
	Bi-Stable), High pass and low pass filters	Integrated Circuits.	8
	using R-C Circuits and R-L, R-L-C	Fourth Edition R A	
	Circuits & their response to step input,	Gayakwad	
	Pulse input, Square input and Ramp		
	Input, Attenuators, Clamping Circuit		
	theorem, Clipping and Clamping circuits,		
	Schmitt Trigger, Comparator.		
6.	Specialized IC Applications	Chapter 9	
	Voltage-Controlled Oscillator (VCO),	OP-AMPS & Linear	
	Square Wave Generator, Triangular	Integrated Circuits.	8
	Wave Generator, Saw-tooth Wave	Fourth Edition R A	
	Generator, The 555 Timer, Monostable	Gayakwad	
	and Astable Multivibrator using IC 555,		
	Phase-Locked Loop (PLL), Voltage		
		II	1
	Regulators.		

Evaluation Scheme

- 1. Test 1 :15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes

• 5 marks : Attendance

Text Books

- 1. R.A. Gayakwad, Op Amp and Linear Integrated Circuits, Fourth edition, earson Education .
- 2. Robert F. Coughlin & Frederick F. Driscoll, Operational Amplifiers and Linear Integrated Circuits, 6th edition, Pearson, 2000.

Reference Books

1. Adel S. Sedra, Kenneth C. Smith : Microelectronics Circuits, 5th Ed., Oxford University Press, 2004