DIGITAL SIGNAL PROCESSING

(Core Subject)

Course Code:	10B11EC512	Semester:	5 th Semester, B. Tech (ECE)
Credits:	4	Contact Hours:	L-3, T-1,P-0

Pre-requisites: Signal and System and Mathematics

Course Objectives:

The primary objective of this course is to provide a thorough understanding and working knowledge of design, implementation and analysis DSP systems.

Course Outcomes

Upon successful completion of this course the students will have developed following skills/abilities:

- 1. Interpret, represent and process discrete/digital signals and sytems
- 2. Thorough understanding of frequency domain analysis of discrete time signals.
- 3. Ability to design & analyze DSP systems like FIR and IIR Filter etc.
- 4. Practical implementation issues such as computational complexity, hardware resource limitations as well as cost of DSP systems or DSP Processors.
- 5. Understanding of spectral analysis of the signals

Course Contents :

Unit	Topics	Text book	Lectures
1.	Introduction	[2] & [1]	
	DSP Applications, Concepts of Frequency and Filtering,		2
	Commonly used signals in DSP, characterization of LTI		2
	systems.		
2.	Review of Z-transform	[1] & [2]	
	a) Z-transform, Concepts of zeros and poles of a system, region		
	of convergence (ROC) of z- transform[2L],		3
	b) Inverse z-transform and Properties of Z- transform[1L]		
3.	Frequency Domain Representation of Signals	[1], &[2]	11
	a) Concept of spectrum [1L]	$[1], \alpha[2]$	11
	b) Sampling theorem; decimation and interpolation of discrete		
	signals. [2L]		
	c) Frequency representation of discrete time signals:		
	i. Discrete time Fourier transform (DTFT) [2L]		
	ii. Discrete Fourier transform (DFT) [2L]		
	iii. Fast Fourier transform (DIT and DIF)[2L]		
	iv. Concepts of circular shift and convolution, [1L]		

		1	1
8	Introduction to Digital Signal Processors		1
-	b) power spectral density and Spectral estimation [2L]		
	[2L]		4
1.	a) Autocorrelation and cross correlation with examples	[1] & [4]	
7.	word length effects in digital filter[2L] Random Signal Analysis & Spectral Estimation	[1] & [1]	
	g) Finite precision: Quantization and round-off error, Finite		
	characteristics based on a previously designed filter [1L]		
	f) Spectral transformations for designing a filter with new		
	e) IIR filter design using bilinear transformation [1L]		
	d) IIR filter design using Impulse Invariance [1L]		12
	c) FIR filter design using frequency sampling method[2L]		
	b) FIR filter design using windowing Techniques[3L]	&[4]	
	order [2L]	[1],[2]	
	a) Digital filter specifications, selection of filter type, and filter	[1] [0]	
6.	Filter Design Techniques		
	phase FIR systems [2L]		
	b) FIR system – direct and cascade form, and structure for linear		
	form [2L]		4
5.	a) IIR system- direct cascade and parallel form; Transposed	[1]	
5	filters, comb filters, stability issues for IIR filters [2L] Filter Structures		
	ii. IIR filters, pole and zero locations of IIR filters, all pass		
	locations of linear phase FIR filters, [2L]		
	i. FIR filters, ideal filters, linear phase filters, zero		
	c) Types of transfer functions	[1]	
	[1L]		6
	b) Transfer function and the frequency response of a system		
	a) Concept of filtering – revisited, lowpass, bandpass and highpass filters [1L]		
	Transform Domain		
4.	Linear Time Invariant (LTI) Systems in		
	b) Filtering of long data sequence[1L]		

Evaluation Scheme

- **1.** Test 1 : 15 marks
- **2.** Test 2 : 25 marks
- **3.** Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 1. 10 Marks : Class performance, Tutorials & Assignments
 - 2. 10 Marks : Quizzes
 - **3.** 5 marks : Attendance

Text Books

- **1.** Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-time signal processing, 2nd edition, Pearson Education.
- **2.** Mitra, Sanjit Kumar, and Yonghong Kuo. Digital signal processing: a computer- based approach, 2nd edition, Tata McGraw-Hill.
- **3.** Mitra, Sanjit Kumar, and Yonghong Kuo. Digital signal processing, 3rd edition, Tata McGraw-Hill.

REFERENCE BOOKS

- **1.** Proakis, John G. Digital signal processing: principles algorithms and applications. Pearson Education India.
- 2. Hayes, Monson H. Digital signal processing Tata McGraw-Hill edition 2004