ANALOG ELECTRONICS

(Core Subject)

Course Code:	10B11EC312	Semester:	3rd Semester, B. Tech (ECE)
Credits:	4	Contact Hours:	L-3, T-1, P-0

Course Objectives

The objectives are to study

- 1. To give the idea about fundamental properties of semiconductors.
- 2. To prepare students to perform the analysis of any Analog electronics circuit.
- 3. To empower students to understand the design and working of BJT / FET amplifiers, oscillators and Operational Amplifier.
- 4. To prepare the students for advanced courses in Communication system Circuit Design.

Course Outcomes

- 1. Acquire basic knowledge of physical and electrical conducting properties of semiconductors.
- 2. Develop the Ability to understand the design and working of BJT / FET amplifiers.
- 3. Able to design amplifier circuits using BJT s And FET's. and observe the amplitude and frequency responses of common amplifier circuits
- 4. Observe the effect of negative feedback on different parameters of an Amplifier and different types of negative feedback topologies.
- 5. Observe the effect of positive feedback and able to design and working of different Oscillators using BJTS.
- 6. Develop the skill to build, and troubleshoot Analog circuits.

Course Content

Unit	Topics	References	Lectures
		(chapter	
		number, page	
		no. etc)	
1	Review of Semiconductors		
	Intrinsic and extrinsic	Chap- 1,3,4,5	
	semiconductors, Effect of		
	temperature and doping on carrier	B.G.	
	mobility, PN junction under thermal	Streetman	
	equilibrium, Contact potential and		
	Formation of depletion layer, Effect		
	of bias on PN junction, Calculation		10
	of electric field and potential		
	distribution, Diode resistances,		
	Junction capacitance, Diffusion		
	equations and Einstein relation,		
	Carrier injection and diffusion		
	process, Low and high level		
	injection, Electron and hole diffusion		
	coefficient and diffusion current,		
	Diffusion length		

	AC Analysis of DIT Amplifies	Chan	
2	AC Analysis of BJT Amplifies	Chap-	
	BJT small signal model, Transistor r _e model, Fixed bias, Self bias,	7,8,9,11,12	
	Collector feedback, voltage divider		
	bias, common base, Emitter follower,	D I Daylogtad	
	Effect of R_L and R_s , Cascade,	R L Boylestad	10
			10
	Cascode, Darlington pair, Feedback		
	pair, Hybrid equivalent model,		
	relationship between h-parameter and r _e model of CE, CB and CC		
	,		
	configuration Low frequency		
	response of BJT amplifier Multistage		
	frequency response.	CI 10	
3	AC Analysis of FET Amplifiers	Chap-10	
	JFET small signal model, Fixed bias,		6
	Self bias, voltage divider bias,	R L Boylestad	
	common gate, source follower,		
	MOSFETs, effect of R_L and R_{sig} ,		
	Cascade configuration		
	Cascade configuration		
4	Feedback Amplifier	Chap-17	
	Feedback concept, negative &	_	
	positive feedback, voltage/ current,	R L Boylestad	5
	series/shunt feedback, Practical		3
	feedback circuits, Design Procedure		
	for the feedback amplifiers.		
5	Oscillators	Chap-17	
	Berkhausen criterion, Colpitts,	_	5
	Hartley's, Phase shift, Wein bridge	R L Boylestad	
	and crystal oscillators.		
6	Power Amplifiers	Chap-15	
	Class A, B, AB, C and D amplifiers,	_	5
	Conversion efficiency, and Design of	R L Boylestad	
	Tuned amplifier using BJT.		

Evaluation Scheme

Test 1 :15 marks
Test 2 : 25 marks
Test 3 : 35 marks

4. **Internal Assessment**: 25 marks

• 10 Marks : Class performance, Tutorials & Assignments

10 Marks : Quizzes5 marks : Attendance

Text Books

- 1. B.G. Streetman: Solid State Electronic Devices, 5th Ed., Prentice Hall, 2000
- 2. R L Boylestad and Nachelsky: Electronic Devices & circuit Theory, 10th Ed.Pearson.

Reference Books

- 1. S.M.Sze: Semiconductor Devices: Physics & Technology, John Wiley, 2002.
- 2. Adel S. Sedra, Kenneth C. Smith : Microelectronics Circuits, 5th Ed., Oxford University Press, 2004