SIGNALS AND SYSTEMS

(Core Subject)

Course Code:	10B11EC301	Semester:	3 rd Semester, B. Tech (ECE) 4 th Semester, B. Tech (CSE/IT)	
Credits:	4	Contact Hours:	L-3, T-1, P-0	

Course Objectives

- 1. To study the properties and representation of discrete and continuous signals.
- 2. To study the analysis and synthesis of discrete time systems.
- 3. To study the sampling process and analysis of discrete systems using z-transforms.
- 4. To represent periodic signals using Fourier series
- 5. To find the spectral components of signals using Fourier transform
- 6. To analyze continuous signals using Laplace transform
- 7. To analyze discrete signals using z- transform.

Course Outcomes

Students will be able to

- 1. Classify signals and systems based on their properties and determine the mathematical representations of signals and systems.
- 2. Explain the role of convolution in the analysis of LTI systems and also able to formulate and solve differential /difference equations describing LTI systems.
- 3. Analyze the spectral characteristics of signals using Fourier analysis and analyze system properties based on impulse response and Fourier analysis.
- 4. Apply the Laplace transform and Z- transform for analysis of continuous-time and discrete-time signals and systems.
- 5. Understand the process of sampling and the effects of under sampling.

Course Contents

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Continuous-time and discrete-time signals, signal energy and power, periodic signals, even- odd signals, exponential and sinusoidal signals, Unit impulse and step functions, continuous and discrete time systems, System classifications, system properties.	A.V. Oppenheim: Chapter 1 B.P. Lathi: Chapter 1 & 8	8
2.	Convolution integral and convolution sum, properties of LTI systems, LTI systems described by differential and difference equation, response of LTI systems.	A.V. Oppenheim: Chapter 2 B.P. Lathi: Chapter 2 & 9	5
3	Fourier series representation of continuous and discrete time signals, properties, Fourier	A.V. Oppenheim : Chapter 3-5 B.P. Lathi: Chapter 3, 4	13

	Transform representation of continuous-time and discrete time signals, properties, system characterization by linear constant coefficient difference equation.		
4	The Laplace Transform, ROC, properties of Laplace-transform, analysis and characterization of LTI systems using Laplace Transform.	~ ~	6
5	The z-transform, ROC and pole-zero-plot, properties of z-transform, analysis and characterization of LTI systems using z- transform. Stability criterion.		7
6	Sampling, types of sampling, Analog to digital conversion, Signal reconstruction.	A.V. Oppenheim : Chapter 7 B.P. Lathi: Chapter 5	3
Total Number of Lectures			42

Evaluation Scheme

- 1. Test 1 : 15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

1. A.V. Oppenheim & A.S. Willsky & S.H. Nawab, "Signals & Systems", 2nd Ed., Prentice Hall.

Reference Books

- 1. B.P. Lathi, "Signal Processing and Linear Systems", 2nd Ed., Oxford University Press.
- 2. Simon Haykin, Barry Van Veen, "Signal & Systems", 2nd Ed., John Willey and Sons.