DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Master of Technology in Electronics & Communication Engineering Effective from Academic Session – 2021-22

Detailed Course Structure & Curriculum

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

SEMESTER - I								
S. No.	Course Code	Name of the Subjects		Course Hours			Total	Credits
			C/E	L	Т	Р		
1	21M11EC112	Embedded Systems and Applications	C	3	0	0	3	3
2	21M11EC111	Sensor and Smart Instrumentation	C	3	0	0	3	3
3	21M11EC113	Object Oriented Programming	C	3	0	0	3	3
4		Departmental Elective - I	E	3	0	0	3	3
5		Departmental Elective - II	E	3	0	0	3	3
6		Departmental Elective - III	E	3	0	0	3	3
7	21M11EC172	Advanced Communication Lab	C	0	0	6	6	3
						Total	24	21
		SEMESTER -	II					
S.No.	Course Code	Subject Names		Course Hours			Total	Credits
			C/E	L	Т	Р		
1	21M11EC211	Digital System design using verilog HDL	С	3	0	0	3	3
2	21M11EC212	Artificial Intelligence and Expert Systems	С	3	0	0	3	3
3	21M11EC213	Network Security Protocols		3	0	0	3	3
4		Departmental Elective - IV		3	0	0	3	3
5		Departmental Elective - V		3	0	0	3	3
6		Open Elective		3	0	0	3	3
7	21M11EC272	Advanced Signal Processing Lab		0	0	6	6	3
						Total	24	21
		SEMESTER -	Ш					
			_					
S. No.	Course Code	Name of the Subjects		Course Hours			Total	Credits
			C/E	L	Т	Р		
1	21M19EC391	Literature Review / Seminar	C	0	0	6	6	3
2	21M19EC392	Dissertation Part - I	C	0	0	28	28	14
						Total	34	17
		SEMESTER -	IV					
S.No.	Course Code	Subject Names		Course Hours			Total	Credits
			C/E	L	Т	Р		
1	21M19EC491	Seminar	C	0	0	6	6	3
2	21M19EC492	Dissertation Part - II	C	0	0	28	28	14
						Total	34	17

LIST OF ELECTIVES FOR M. TECH ECE								
ELECTIVE – I								
S.No.	Course Code	Subject Names		Course Hours			Total	Credits
			C/E	L	Т	Р		
1	21M1WEC137	Advanced Cognitive Radio	E	3	0	0	3	3
2	21M1WEC138	Advanced Software Defined Radio	E	3	0	0	3	3
3	21M1WEC139	Fault Tolerant Communication Networks	E	3	0	0	3	3
4	21M1WEC140	Advanced Next Generation Communication	E	3	0	0	3	3
		Elective - II						
1	21M1WEC141	Advanced Control Systems	E	3	0	0	3	3
2	21M1WEC142	Networked Distributed Control	E	3	0	0	3	3
3	21M1WEC143	Fundamentals of MIMO Systems	E	3	0	0	3	3
4	21M1WEC144	Mobile Adhoc and Sensor Network	E	3	0	0	3	3
	Elective - III							
1	21M1WEC145	Architecture and Algorithms for DSP Systems	Е	3	0	0	3	3
2	21M1WEC146	Statistical & Adaptive Signal Processing		3	0	0	3	3
3	21M1WEC147	Statistical Signal Processing	E	3	0	0	3	3
4	21M1WEC148	Radar and Sonar Signal Processing	E	3	0	0	3	3
5	21M1WEC149	Computational Intelligence and Applications	Е	3	0	0	3	3
	I	Elective - IV	1	ſ				
1	21M1WEC237	Biomedical signal and Image Processing	E	3	0	0	3	3
2	21M1WEC238	Advanced Digital Image Processing	E	3	0	0	3	3
3	21M1WEC239	CMOS Digital Design Techniques	E	3	0	0	3	3
4	21M1WEC240	Real Time Embedded System	E	3	0	0	3	3
5	21M1WEC241	VLSI in Biomedical Processing System	E	3	0	0	3	3
		Elective - V		1				
1	21M1WEC242	Anteena and Radio Wave Propagation	E	3	0	0	3	3
2	21M1WEC243	Antenna Theory and Techniques	E	3	0	0	3	3
3	21M1WEC244	RF IC Design	E	3	0	0	3	3
4	21M1WEC245	Analog IC Design	E	3	0	0	3	3

M. TECH. ELECTRONICS & COMMUNICATION ENGINEERING

COURSE CONTENTS

Embedded Systems and Applications

COURSE CODE: 21M11EC112

COURSE CREDITS: 3

CORE/ELECTIVE: CORE

L-T-P: 3-0-0

Prerequisite: None

Course Objectives:

To learn about the embedded system application areas, design challenges, embedded system processors and tools used for embedded system design.

Course Outcomes:

Sl. No.	Course Outcomes	Level of Attainment
1	Understand various components of embedded system, design challenges	Familiarity
2	Comprehend RISC architecture, programming of ARM and PIC microcontrollers	Usage
3	Know about embedded system design and development methodology, tools and languages used for embedded system design	Usage
4	Learn about Devices and Communication interface used in embedded system	Usage
5	Learn about Real Time Operating System used for embedded system application	Usage

Course Contents:

Unit	Contents	Lectures required
1	Introduction: Characteristics of Embedded System Computing, Concept of Real time Systems, Classification, Application areas, Design challenges – real-time execution, physical size, power consumption, multirate operation	6
2	Embedded system processors: ARM Processor Fundamentals and Architectures, ARM Instruction Set, PIC Microcontroller and its Architecture, Instruction Set	8
3	Embedded hardware units and devices in a System, Embedded software in a system, Embedded system-on-chip (SOC), Embedded system-on-module (SOM)	6
4	Devices and Communication interface: Serial communication devices, Parallel communication, Wireless Devices, Timer and Counting Devices, Watchdog timer, Real time clock, Parallel communication network using ISA, PCI, Serial bus	8

	communication protocols, SCI, CAN, I2C, USB		
5	Real Time Operating System: Real-time Kernels, Polled Loops System, Co- routines, Interrupt-driven System, Multi-rate System, Processes and Threads, Context Switching, Scheduling, Inter-process Communication, Real-time Memory Management, I/O, VxWorks, RT-Linux	8	
6	Case Study: ARM Cortex-A5 Processor-based SOM, ATSAMA5D27-SOM1, Use of SAMA5D2 GPIO under Linux	6	
Total lectures			

Suggested Text Book(s):

1. Frank Vahid and Tony Givargis, "Embedded system design: A unified Hardware/Software introduction,"3rd Ed., Wiley 2014

2. Shibu K. V, "Introduction to Embedded Systems," 2nd Ed., McGraw Hill 2017

3. Embedded System: Architecture, Programming and Design by Rajkamal,2nd Ed., 2010, Tata McGraw Hill

Suggested Reference Book(s):

1. Steve Furber, "ARM System-on-Chip Architecture," 2nd Ed., Pearson, 2012

2. Tim Wilmshurst, "Designing Embedded Systems with PIC Microcontrollers: Principles and Applications," 2nd Ed., Newnes, 2009

3. Steven F Barrett and Daniel J Pack, "Embedded Systems Design and Applications with the 68HC12 and HCS12," 1st Ed., Pearson 2012

4. Kenneth Ayala, "The 8051 microcontroller," 3rd Ed., Thomson, 2005

Other useful resource(s):

https://www.microchip.com/wwwproducts/en/ATSAMA5D27-SOM1

https://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en1000789

NPTEL ONLINE COURSES

- 1. Embedded Systems: https://nptel.ac.in/courses/108105057/
- 2. Embedded Systems: https://nptel.ac.in/courses/108102045/
- 3. Embedded Systems Design: https://nptel.ac.in/courses/106105159/

Evaluation Scheme:

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1.	T-1	15	1 Hour.	Syllabus covered up to T-1
2.	T-2	25	1.5 Hours	Syllabus covered up to T-2
3.	T-3	35	2 Hours	Entire Syllabus
4.	Teaching Assessment	25	Entire Semester	Assignment (2) - 10 Quizzes (2) - 10 Attendance - 5

Sensors and Smart Instrumentation

COURSE CODE:21M11EC111 COURSE CREDITS: 3 CORE/ELECTIVE: CORE L-T-P: 3-0-0

Prerequisite: None

Course Objectives:

To learn about various sensors and transducers and their integration in a smart instrumentation system

Course Outcomes:

Sl. No.	Course Outcomes	Level of Attainment
1	Knowledge of characteristics of sensors and measurement system, criteria for transducer selection	Familiarity
2	Learn about data acquisition systems, signal conditioners and signal converters	Usage
3	Knowledge about different basic sensors and transducers used for measurement of physical quantities	Usage
4	Knowledge about different measurement systems used in industry	Usage
5	Learn about characteristics and working of smart sensors and instruments	Assessment

Course Contents:

Unit	Contents	Lectures required
1	Introduction: Basics of measurement systems, sensors and transducers, General transducers characteristics, static and dynamic characteristics, Criteria for transducer selection, Calibration techniques, Classification of errors	6
2	Data acquisition system and its uses in intelligent Instrumentation systems, Signal conditioners, signal converters, sample and hold. Instrumentation amplifiers, Interference, grounding and shielding	8
3	Resistive Transducers: Potentiometers, strain gauges, Resistance Thermometer, Thermistors. Inductive Transducers, Capacitive Transducers: Principles of operation, construction, Piezoelectric transducer, fibre optic transducers for the measurement of force, temperature, flow and pressure, Elastic Transducers: Spring bellows, diaphragm, bourdon tube.	10
4	Pressure sensor, temperature measurement, flow measurement, level measurement, displacement, force, velocity, acceleration and torque measurement. Telemetry, multiplexing, modulation of data, transmission channels.	8

5	Smart instruments - comparison with conventional transducers - self diagnosis and remote calibration features - smart transmitter with HART communicator - Micro Electro Mechanical Systems - sensors, actuators - principles and applications, nonlinearity compensation. Cogent sensors, Soft sensors, self-validating sensors, temperature-compensating sensors, ANN-based sensors, ANN techniques for fault detection, linearization, and calibration	10
Total lectures		

Suggested Text Book(s):

- 1. Doebelin EO, "Measurement Systems: Application and Design," Tata McGraw Hill, 7th Ed., 2019
- 2. Patranabis D, "Sensors and Transducers," Prentice Hall of India, 2nd Ed., 2003
- 3. Manabendra Bhuyan, "Intelligent Instrumentation: Principles and Applications", CRC Press, 2017

Suggested Reference Book(s):

- 1. Subhas Chandra Mukhopadhyay, "Intelligent Sensing, Instrumentation and Measurements (Smart Sensors, Measurement and Instrumentation Book 5)," Springer, 2013.
- 2. Bela G. Liptak, "Instrument Engineers' Handbook, Volume One: Process Measurement and Analysis," 4th Ed., CRC Press, 2003

Other useful resource(s):

NPTEL Course: https://nptel.ac.in/courses/108/105/108105064/ Evaluation

Scheme:

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1.	T-1	15	1 Hour.	Syllabus covered up to T-1
2.	T-2	25	1.5 Hours	Syllabus covered up to T-2
3.	T-3	35	2 Hours	Entire Syllabus
4.	Teaching Assessment	25	Entire Semester	Assignment (2) - 10 Quizzes (2) - 10

Object Oriented Programming

COURSE CODE: 21M11EC113

COURSE CREDITS: 3

CORE/ELECTIVE: CORE

L-T-P: 3-0-0

Prerequisite: None

Course Objectives:

To learn the concept of object oriented programming and to acquire object oriented programming skills in Python, C++ and JAVA

Course Outcomes:

Sl. No.	Course Outcomes	Level of Attainment
1	Learn about object-oriented approach to programming and advantages of Object-oriented programming over other approaches	Familiarity
2	Understand the concepts of data abstraction, encapsulation, inheritance and polymorphism	Familiarity
3	Analyze and decompose problem specifications from Object Oriented Perspectives and represent the solution, using UML notation	Usage
4	Learn to do object oriented programming using Python	Usage
5	Learn to do object oriented programming using C++ and JAVA	Usage

Course Contents:

Unit	Contents	Lectures required
1	Introduction: procedural programming, structured programming, abstract data types, data encapsulation, object oriented programming paradigm	6
2	Abstract Data Types, Classes and Objects, Inheritance (Single, Multilevel, Multiple, Hierarchical, Hybrid). Super-classes (base classes) and sub-classes (derived classes). Specialisation vs. Generalisation. Abstract and Concrete Classes and Methods. Inheritance for Specialisation vs. Specification. Inter-class Relationships (isa, has-a, part-of, association, aggregation, composition). Class members: fields (data members, variables, attributes), and methods (member functions, procedures). Messages. Object State. Constructors (parameterised, copy, conversion, default) and destructors. Object and member scope. Polymorphism.	10

	Total lectures	42
5	Object oriented programming using C++ and JAVA: Objects, Classes, Methods, Constructors and destructors. Friend Functions, Static member functions, Inheritance, Multiple Inheritance, Polymorphism and Virtual Functions, Function and Operator overloading, Namespace and Templates in C++. Packages, Class path, Interfaces in JAVA. Exception Handling in C++ and JAVA	10
4	Object oriented programming using Python: Builtin classes in Python - data types. User defined class, Object, Method, Inheritance, Encapsulation, Polymorphism, Data Abstraction in Python. Exception handling.	8
3	Unified Modelling Language (UML). Use case diagrams: actors, system boundary, < <uses>> and <<extends>>. Class diagrams: associations, aggregation, dependency, and inheritance. Object interaction diagrams, object state transition diagrams.</extends></uses>	8

Suggested Text Book(s):

- 1. Robert Lafore, "Object-Oriented Programming in C++," 4th Ed., Sams, 2001
- 2. Herbert Schildt, "Java The Complete Reference 11th Ed. McGraw Hill, 2020
- 3. Martin C. Brown, "Python: The Complete Reference", 4th Ed. McGraw Hill, 2018

Suggested Reference Book(s):

- 1. A Downey, "Learning with Python", Dreamtech Press, 2015
- 2. Bjarne Stroustrup, "The C++ Programming Language," 3rd Ed., Pearson, 2002
- 3. Matha, "Object Oriented Analysis and Design Using UML: Introduction to Unified Process and Design Patterns", PHI, 2008

Other useful resource(s):

NPTEL Course: https://nptel.ac.in/courses/106/105/106105153/

Evaluation Scheme:

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1.	T-1	15	1 Hour.	Syllabus covered up to T-1
2.	T-2	25	1.5 Hours	Syllabus covered up to T-2
3.	T-3	35	2 Hours	Entire Syllabus

4.	Teaching Assessment	25	Entire Semester	Assignment $(2) - 10$ Quizzes $(2) - 10$
				Attendance - 5

Advanced Cognitive Radio

COURSE CODE:21M11WC137

COURSE CREDITS: 3

CORE/ELECTIVE:

: 3-0-0

Pre-requisite: None

Course Objectives:

- 1. To understand the fundamentals of cognitive radio networks.
- 2. To understand the need of cognitive radio networks for next generation communication
- 3. Analyze the design of wireless networks based on cognitive radio technology

Course Outcomes:

S. No.	Course Outcomes	Level of Attainment
CO-1	To understand the fundamentals of cognitive radio networks	Familiarity
CO-2	Knowledge of spectrum sensing and spectrum sharing models in the Cognitive Radio Network	Assessment
CO-3	To understand the need of cognitive radio networks for next generation communication	Assessment
CO-4	Analyze the emerging issues in cognitive radio network	Usage

Course Contents:

Unit	Contents	Lectures required
1	CRN Basics: Cognitive cycle, Hypothesis model, Spectrum sensing and sharing overview, challenges in spectrum sensing and sharing	11
2	Multiuser and Multi-antenna Environment in CRN, Performance Parameters and their optimization in CRN	11
3	Clustering in CRN, Primary User Emulation Attack, Full Duplex CRN, NOMA in CRN	10
4	CRN in the context of Industry 4.0, Recent Advancements in CRN	10
	Total lectures	42

Suggested Text Book(s):

1. Ekram Hossain, Dusit Niyato and Zhu Han: Dynamic Spectrum Access and Spectrum Management in Cognitive Radio Networks, 1st Edition, Cambridge University Press, 2009.

2. Huseyin Arslan: Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, 1st Edition, Springer, 2007.

Suggested Reference Book(s):

- Linda E. Doyle: Essentials of Cognitive Radio, 1st Edition, Cambridge University Press, 2009Fundamentals of Wireless Communication by Tse David and Viswanath Pramod, Cambridge University press, Cambridge
- 2. Yang Xiao and Fei Hu: Cognitive Radio Networks, 1st Edition, CRC Press, 2008

Evaluation Scheme:

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1	T-1	15	1 Hour	Syllabus covered upto T-1
2	T-2	25	1.5 Hours	Syllabus covered upto T-2
3.	T-3	35	2 Hours	Entire Syllabus
4.	Teaching Assessment	25	Entire Semester	Assignment (2) - 10 Quizzes (2) - 10 Attendance - 5

Course Outcomes (COs) contribution to the Programmed Outcomes (POs)

Course outcomes (Advanced Cognitive Radio Network)	P0-1	PO-2	PO-3	P0-4	PO-5	PO-6	P0-7	PO-8	PO-9	PO-10	P0-11	PO-12	Average
CO-1	1	2	2	2	3	1	1	1	1	2	2	3	1.75
CO-2	3	3	2	2	2	2	2	1	2	2	1	2	2
CO-3	3	1	2	1	2	2	2	2	2	3	1	1	1.83
CO-4	3	3	2	2	2	2	1	2	1	2	2	1	1.91
Average	2.5	2.25	2	1.75	2.25	1.75	1.5	1.5	1.5	2.25	1.5	1.75	

FAULT-TOLERANT COMMUNICATION NETWORKS (Elective Subject)

Course Code:	14M1WEC331	Semester:	M.Tech. 3rd Sem.
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

The objectives are to study

- 1. Define common terms such as availability, reliability, dependability etc.
- 2. Induction with the service-based network design approach.
- 3. Terminology related to network pathology.
- 4. Role of reliability engineering in fault-tolerant network design.
- 5. Methodology of protection and restoration.
- 6. Implementation of fault-tolerant scheme for: (i) optical networks, (ii) SONET/SDH network, (iii) MPLS based network, (iv) adhoc networks
- 7. Planning for mission-critical networks.

Course Outcomes

After studying this course the students would gain enough knowledge

- 1. Apply the concepts of reliability and fault-tolerance for the network design.
- 2. Grade the network services on the basis of predictable.
- 3. Apply the knowledge for various networks viz. (i) optical networks, (ii) SONET/SDH network, (iii) MPLS based network, (iv) adhoc networks
- 4. Extend the knowledge for the mission-critical networks.

Unit	Topics	References (chapter	Lectures
		number, page no. etc)	2
1.	Background of Fault-tolerance in Communication Network: Historical perspective of fault-tolerance in communication, performance predictability, best-effort service, guaranteed service, QoS	[1,2,3,7,8]	9
	Fault, Failure and Error: reliability engineering in network design, causes of network failure, uncertainty in network, Imperfections in network design, performance failure, breakdown failure, reliability evaluation, failure distribution, MTTR, MTTF.		
	Concepts of reliability, survivability, dependability, resiliency, recovery, continuity and performability		
2		Kang : Chapter 3	8
2.	Network Availability, Protection & Restoration		
	Continuity and availability in communication		
	network, transition from acceptable to unacceptable		
	service state and Vice-Versa,		
	Concepts and methodology of protection and restoration. [1,2,5]		
3		Kang : Chapter 5	5
	Fault-tolerant schemes for Optical networks, [2,4]	Pucknell : Chapter 2	
4		Kang : Chapter 7	5
	Fault-tolerant schemes for SONET/SDH network, [2]	Uymera : Chapter 10	
5		Pucknell : Chapter 3	5

	Fault-tolerant schemes for MPLS based network, [2]	Kang : Chapter 2 (Fabricarion)	
6	Fault-tolerant schemes for adhoc networks [6]		5
7	Mission-critical network planning [5]		5
		Total Lectures	42

Evaluation Scheme

- 1. Test 1 :15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1. Martin L. Shooman, Reliability of Computer Systems and Networks: Fault Tolerance, Analysis, and Design, John Wiley & Sons.
- 2. Jean-Philippe Vasseur, Mario Pickavet, Piet Demeester Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS, Elsevier.
- 3. James D. McCabe, Network Analysis, Architecture, and Design, Elsevier
- 4. Arun K. Somani, Survivability and Traffic Grooming in WDM Optical Networks, Cambridge University Press.
- 5. Mathew Liotine, Mission-Critical Network Planning, Artech House.

Reference Articles:

1. Xing, Liudong, Haoli Li, and Howard E. Michel. "Fault-tolerance and reliability analysis for wireless sensor networks." International Journal of Performability Engineering 5.5 (2009): 419.

2. Malec, Henry A. "Communications reliability: a historical perspective."Reliability,IEEE

Transactions on 47, no. 3 (1998): SP333-SP345.

3. Bjarne E. Helvik, Perspectives on the Dependability of Networks and Services, Telektronikk (100th Anniversary Issue: Perspectives in telecommunications), (3):27 – 44, 2004.

Advanced Next Generation Communication

COURSE CODE:

COURSE CREDITS: 3

CORE/ELECTIVE:

: 3-0-0

Pre-requisite: Wireless Communication

Course Objectives:

- 1. To understand the fundamentals of wireless channels.
- 2. To understand the various technologies employed in next generation communication.
- 3. To study recent advancement in next generation communication.

Course Outcomes:

S. No.	Course Outcomes	Level of Attainment
CO-1	Understanding the evolution of various generation of wireless communication	Familiarity
CO-2	Analyze the behavior of wireless channel	Assessment
CO-3	Knowledge of various technologies of wireless communication	Assessment
CO-4	Design and development of various applications of technologies in next generation communication	Usage

Course Contents:

Unit	Contents	Lectures
1	Evolution of different generation of wireless communication, Basic of wireless communication, Baseband and pass band representation of signal, Effect of wireless channel on transmitted signal.	7
2	Fading concept, Multipath fading and shadowing, Channel characteristics and QoS parameters	7
3	Basic technologies used in wireless communication: Diversity, Equalization, MIMO, OFDM,SVD	10
4	Advanced Technologies used in wireless communication: NOMA, CRN, Machine Learning, Half duplex and Full duplex wireless communication	10
5	Application of Machine learning and NOMA in next generation communication	8
Total lect	tures	42

Suggested Text Book(s):

- 1. Wireless Communications Principles and Practice; by Theodore S Rappaport, Pearson Education Pte. Ltd., Delhi
- 2. Andrea Goldsmith, "Wireless Communications," Cambridge University Press, 2005

Suggested Reference Book(s):

- 1. Fundamentals of Wireless Communication by Tse David and Viswanath Pramod, Cambridge University press, Cambridge
- 2. Mobile Communications; By: Schiller, Jochen H; Addison Wesley Longman Pte Ltd., Delhi

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1	T-1	15	1 Hour	Syllabus covered upto T-1
2	T-2	25	1.5 Hours	Syllabus covered upto T-2
3.	T-3	35	2 Hours	Entire Syllabus
4.	Teaching Assessment	25	Entire Semester	Assignment (2) - 10 Quizzes (2) - 10 Attendance - 5

Evaluation Scheme:

Course Outcomes (COs) contribution to the Programmed Outcomes (POs)

Course outcomes (Advanced Next Generation Communication)	PO-1	P0-2	PO-3	P0-4	PO-5	PO-6	P0-7	PO-8	6-04	PO-10	P0-11	PO-12	Average
CO-1	1	2	2	2	3	1	1	1	1	2	2	3	1.75
CO-2	3	3	2	2	2	2	2	1	2	2	1	2	2
CO-3	3	1	2	1	2	2	2	2	2	3	1	1	1.83
CO-4	3	3	2	2	2	2	1	2	1	2	2	1	1.91
Average	2.5	2.25	2	1.75	2.25	1.75	1.5	1.5	1.5	2.25	1.5	1.75	

Fundamentals of MIMO Systems

(Core Subject)

Course Code:	12M1WEC432	Semester:	4 th Sem. M. Tech (ECE)/DD
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

The main objective of the course is to

- 1. To make students familiar with fundamentals of wireless communication systems.
- 2. To understand the diversity and spatial multiplexing phenomenon in MIMO system.
- 3. To understand the receiver system design for MIMO.
- 4. To become familiar with OFDM and MIMO-OFDM systems.

Course Outcomes

After studying this course the students would gain enough knowledge of

- 1. Emerging issues for implementing MIMO wireless channels.
- 2. Different fading channel distributions in multipath wireless channel.
- 3. OSTBC design for multiple antenna system.
- 4. Computation of performance parameters of MIMO wireless system.

Course Contents

Unit	Topics	References (chapter	Lectures
		number, page no. etc)	
1.	Overview of Probability and Stochastic Processes: Probability distributions, Statistical averages and Random variables, Binomial distribution, Chi-square distribution, Rayleigh distribution, Rice distribution, Nakagami m- distribution, Central limit theorem, etc.	Haykin: Chapter 8	2
2.	Overview of Wireless Channel and Fading:	Goldsmith: Chapter 3	5
	Multi-path and Time-varying channel impulse		
	response, Inter-Symbol-Interference,		
	Narrowband fading, Envelope and power		
	distribution, Level-crossing Rate and Average		
	fading duration, Wideband fading, slow and fast-		
	fading, Delay Spread and Coherence Bandwidth,		
	Doppler Spread and Channel Coherence Time,		
	Rayleigh fading, Rician fading, m-Nakagami		
	fading		
3	MIMO-I: Diversity: Temporal diversity, Frequency diversity, Spatial diversity, Multiplexing gain, Diversity gain, Analysis of receiver diversity, Combining schemes : Selection, Threshold, Maximal ratio, Equal gain, Transmitter diversity: with and without channel state information, Alamouti scheme, Diversity Analysis	Goldsmith: Chapter 7, Kshetrimayum: Chapter 1	8
4	MIMO-II: Principles: Multi-antenna system and its advantages, MIMO channel and signal model, MIMO channel capacity, MIMO system model, Analysis of BER of multiple antenna system with diversity, Zero-forcing receiver; drawbacks, MIMO-MMSE receiver; properties and advantages	Goldsmith: Chapter 7, 10, Kshetrimayum: Chapter 3,5	8

5	MIMO-III: Multiplexing Architectures: Decomposition of MIMO channel; Singular value decomposition (SVD), Optimal MIMO power allocation, MIMO system capacity, Transmit beamforming, Orthogonal space-time code (OSTBC), Alamouti code, Non-linear MIMO receiver; V-BLAST; SIC, MIMO beamforming; maximal ratio transmission.	Kshetrimayum: Chapter 7,8, 9, 10	9				
6	Orthogonal Frequency Division Multiplexing (OFDM): Multicarrier modulation (MCM); schematic; detection, Comparison of single carrier and multicarrier transmission, bottleneck in MCM, OFDM schematic and cyclic prefix, Loss in efficiency, Frequency offset in OFDM; ICI, Peak to average power ratio (PAPR) in ODFM, Single-carrier (SC)- FDMA; schematic, subcarrier mapping, BER performance of OFDM, MIMO-ODFM; schematic.	Goldsmith: Chapter 12	5				
7	Applications of MIMO and OFDM: Long term evolution (LTE) and WiMAX; features, OFDMA, Channel dependent scheduling, Resource allocation, Puncturing, H-ARQ, Frequency shift transmit diversity, Network architecture, frame structure, Protocol stack	Kshetrimayum: Chapter 4, 12	5				
Total Number of Lectures							

Evaluation Scheme

- 1. Test 1 :15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1. Goldsmith, Andrea, "Wireless Communications", Cambridge University press (2005).
- 2. Rakhesh. S. Kshetrimayum: "Fundamentals of MIMO Wireless Communications", Cambridge University press, 2017
- 3. Haykin, Simon, "An introduction to analog and digital communications" John Wiley & Sons.

Reference Books

- 1. Space-Time coding: theory and Practice, Hamid Jafarkhani, Cambridge University Press, 2005.
- 2. MIMO: From Theory to Implementation, ALain Sibille, Claude Oestges, and Alberto Zanella, Academic Press, 2013.
- 3. Fundamentals of Wireless Communication, David Tse and Pramod Viswanath, Cambridge University Press, 2005.
- 4. MIMO Wireless Communications, Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith, Arogyaswami Paulraj, and H. Vincent Poor, Cambridge University Press, 2007.

Web resources

1. nptel lecture on MIMO, OFDM and wireless.

Mobile Adhoc and Sensor Networks

COURSE CODE:21M1WEC144

COURSE CREDITS: 3

CORE/ELECTIVE:

: 3-0-0

Pre-requisite: None

Course Objectives:

- 1. To understand the basics of mobile adhoc and sensor networks and the protocol design for these networks;
- 2. To learn about the challenges in the design of mobile ad hoc and sensor networks.

Course Outcomes:

S.No.	Course Outcomes	Level of Attainment
CO-1	Understand the fundamental concepts and applications of mobile ad hoc and sensor networks	Familiarity
CO-2	Describe the MAC protocol design for mobile ad hoc and sensor networks.	Assessment
CO-3	Describe the routing protocol for mobile ad hoc and sensor networks.	Assessment
CO-4	Identifying the issues and challenges in providing QoS.	Usage
CO-5	Familiarity with the various security attacks in network.	Familarity

Course Contents:

Unit	Contents	Lectures
		required
1	Introduction: Mobile Adhoc Networks (MANETs), Wireless Sensor Networks,	5
	Concepts and architectures, Applications of Ad Hoc and	
	Sensor Networks, Design Challenges in Ad hoc and Sensor Networks.	
2	MAC Protocols for Mobile Adhoc Network: Design Goals of a MAC Protocol	8
	for Mobile Ad Hoc Networks, Challenges in designing a MAC Protocol for	
	Mobile Ad Hoc Networks, Classification of MAC Protocols- Contention based	
	protocols - Contention based protocols with Reservation Mechanisms -	
	Contention based protocols with	
	Scheduling Mechanisms - Multi channel MAC - IEEE 802.11.	

3	Routing Protocols and Transport Layer in Mobile Ad Hoc Networks:	8
	Routing Protocol: Design Goals of a Routing Protocol for Mobile Ad Hoc	
	Networks, Challenges in designing a routing protocol for Mobile Ad hoc	
	Networks, Classification: proactive routing, reactive routing (on-demand), hybrid	
	routing, Transport Layer protocol	
	for Ad hoc networks.	
4	MAC protocols for Wireless Sensor Network: Data Dissemination, Data	8
	Gathering, MAC Protocols for wireless sensor networks- Low duty cycle	
	protocols and wakeup concepts, Contention Based	
	protocols, Schedule-Based protocols, IEEE 802.15.4 Zigbee.	
5	WSN Routing, Localization & QoS: Issues in WSN routing, OLSR -	8
	Localization – Indoor and Sensor Network Localization - absolute and relative	
	localization - triangulation, QOS in WSN	
6	Security in Mobile Ad Hoc and Sensor Networks: Network Security,	5
	Security in Ad Hoc Wireless Networks, Network Security	
	Requirements, Security Attacks.	
Total lect	ures	42

Suggested Text Book(s):

- 1. C. Siva Ram Murthy, and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols ", Pearson Education, 2008.
- 2. Labiod. H, "Wireless Adhoc and Sensor Networks", Wiley, 2008.
- 3. Li, X, "Wireless ad -hoc and sensor Networks: theory and applications", Cambridge University Press, 2008.

Suggested Reference Book(s):

- 1. Holger Karl and Andreas Willig "Protocols and Architectures for Wireless Sensor Networks", Wiley, 2005.
- 2. Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc & Sensor Networks: Theory and Applications", World Scientific Publishing Company, 2nd edition, 2011.

EvaluationScheme:

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1	T-1	15	1 Hour.	Syllabus covered upto T-1
2	T-2	25	1.5 Hours	Syllabus covered upto T-2
3.	T-3	35	2 Hours	Entire Syllabus
4.	Teaching Assessment	25	Entire	Assignment (3) - 10
			Semester	
				Quizzes(3) -10
				Attendance - 5

Course Outcomes (COs) contribution to the Programme Outcomes (POs)

Course outcomes (Mobile Adhoc and Sensor Networks)	PO- 1	PO- 2	РО- 3	РО- 4	PO- 5	PO- 6	PO- 7	PO- 8	PO- 9	PO- 10	PO- 11	PO- 12	A ve ra ge
CO-1	3	3	2	2	2	2	2	1	1	2	3	3	2.17
CO-2	3	3	3	3	3	3	3	1	3	3	3	3	2.83
CO-3	3	3	3	3	3	3	3	1	3	3	3	3	2.83
CO-4	3	3	3	2	3	2	2	1	1	2	3	3	2.33
CO-5	3	3	3	3	3	3	3	1	3	3	3	3	2.83
Average	3.00	3.00	2.80	2.60	2.80	2.60	2.60	1.00	2.20	2.60	3.00	3.00	

Architecture and Algorithms for DSP Systems

COURSE CODE: 21M1WEC144

COURSE CREDITS:3

CORE/ELECTIVE:

L-T-P:3-0-0

Pre-requisite: Basic course in Digital Signal Processing Course Objectives:

- 1. To introduce to various DSP algorithms
- 2. Mapping of DSP algorithms to application specific DSP architecture
- 3. Understanding underlying algorithms for various DSP applications
- 4. Learn to reduce algorithmic complexity of filter algorithms

Course Outcomes:

Sl. No.	Course Outcomes	Level of Attainment
1	Students shall be able to understand various DSP algorithms	Familiarity
2	Knowing the target application he/she shall be able to Map the required algorithm to a suitable architecture and choose the efficient architecture	Usage
3	Knowing various available algorithms and be able to tweak that to match a target architecture and also choose the best architecture for an algorithm	Usage
4	Learn to reduce algorithm complexity as well as architectural complexity for low power application algorithms	Assessment

Course Contents:

Unit	Contents	Lectures required	
1	 Introduction for DSP algorithms: VLSI Design flow, Mapping algorithms into Architectures: Graphical representation of DSP algorithms – signal flow graph (SFG), data flow graph (DFG), critical path, dependence graph (DG). Data path synthesis, control structures, Optimization at Logic Level and architectural Design, Loop bound and iteration bound, Algorithms for computing iteration bound, Iteration bound of Multirate data-flow graphs. 		
2	Parallel and pipeline of signal processing application : Architecture for real time systems, latency and throughput related issues, clocking strategy, power conscious structures, array architectures; Pipelining processing of Digital filter, Parallel processing, Parallel and pipelining for Low power design, Optimization with regard to speed, area and power, asynchronous and low power system design, ASIC (application specific integrated circuits) and ASISP application specific instruction set processors) design;	9	
3	Retiming, Unfolding, and Folding:	5	
4	Systolic Array Architecture: Methodology of systolic array architecture, FIR based Systolic Array, Selection of Scheduling Vector, Matrix multiplication of systolic array	5	
5	FastConvolution: Convolution, Cyclic inspectionCook-Toom algorithm, WinogradAlgorithm, Iterated convolution, Design of Fast convolution algorithm by	6	
6	Algorithmic Strength reduction in Filters and Transforms: Parallel FIR filters, Discrete Cosine Transform and Inverse DCT, Parallel Architectures for Rank Order Filters	6	
7	Low power Design :Theoretical background , Scaling v/s power consumption, power analysis, Power reduction techniques, Power estimation approach	3	
	Total lectures	42	

Suggested Text Book(s):

- 1. VLSI Digital Signal Processing Systems: Design and Implementation By K.K. Parhi , John Wiley & Sons, 1999
- 2. M.A. Bayoumi, VLSI Design Methodology for DSP Architectures, Kluwer, 1994 Suggested

Reference Book(s):

- 1. Richard J, Higgins, Digital Signal Processing in VLSI, Prentice Hall, 1991
- 2. U. Meyer Baese, Digital Signal Processing with FPGAs, Springer, 2004

Other useful resource(s):

Evaluation Scheme:

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1	T-1	15	1 Hour.	Syllabus covered up to T-1
2	T-2	25	1.5 Hours	Syllabus covered up to T-2
3.	T-3	35	2 Hours	Entire Syllabus
4.	Teaching Assessment	25	Entire Semester	Assignment (2) - 10 Quizzes (2) - 10 Attendance - 5

Course outcomes (Architecture and Algorithms for DSP Systems)	РО- 1	PO- 2	PO- 3	РО- 4	РО- 5	РО- 6	РО- 7	PO- 8	РО- 9	PO- 10	PO- 11	PO- 12	Average
CO-1	3	3	3	3	2	2	3	3	2	3	3	3	2.75
CO-2	3	3	2	2	2	1	2	2	3	3	2	3	2.4
CO-3	3	3	3	2	2	1	2	3	2	3	3	3	2.5
CO-4	2	3	3	3	2	3	2	2	3	3	2	3	2.5
Average	3	3	2.75	2.5	2	1.75	2.25	2.5	2.5	3	2.5	3	

STATISTICAL SIGNAL PROCESSING

(Elective Subject)

Course Code:	13M1WEC431	Semester:	4 th Semester, M. Tech. (ECE)
Credits:	3	Contact Hours:	L-3, T-0,P-0

Pre-requisites: Signals & Systems, Digital Signal Processing

Course Objectives:

The objective of this course to provides well understanding of

- 1. The random signals, random process and their statistical properties
- 2. Spectral methods signal analysis
- 3. Weiner filtering and adaptive filetring of the signals

Course Outcomes

At the end of the Statistical Signal Processing course, a student should be able to:

- 1. Comprehend the random variable random process and statistical feature of random signals.
- 2. Analyze and understand the modeling styles or methods of the random signals.
- 3. Analyze and understand the FIR, IIR Wiener filtering, and Kalman filtering.
- 4. Analyze and understand the various power spectral estimation methods of the statistical signals.
- 5. Understand the least mean square (LMS), Recursive least square, and others adaptive filtering methods.

Course Contents :

Unit	Topics	Text book	Lectures
1	DISCRETE-TIME RANDOM PROCESSES	[1]	10
	Random Variables: Ensemble Averages , Jointly Distributed		
	Random Variables, Joint Moments, Independent, Uncorrelated and		
	Orthogonal Random Variables, Linear Mean Square Estimation,		
	Gaussian Random Variables, Parameter Estimation: Bias and		
	Consistency,		
	Random Processes: Ensemble Averages, Gaussian Processes,		
	Stationary Processes, The Autocovariance and Autocorrelation		
	Matrices, Ergodicity White Noise, The Power Spectrum		
	Filtering Random Processes: Spectral Factorization, Special		
	Types of Random Processes, Autoregressive Moving Average		
	Processes ,Autoregressive Processes, Moving Average Processes,		
	sHarmonic Processes		
2	SIGNAL MODELING	[1]	06
	The Least Squares (Direct) Method, The Pade Approximation,		
	Prony's Method: Pole-Zero Modeling, Shanks' Method, All-Pole		
	Modeling, Linear Prediction, Application: FIR Least Squares		
	Inverse Filters Iterative Prefiltering, Finite Data Records: The		
	Autocorrelation Method, The Covariance Method, Stochastic		
	Models: Autoregressive Moving Average Models, Autoregressive		
	Models, Moving Average Models, Application : Power Spectrum		
	Estimation		
3	WIENER FILTERING	[1] & [2]	08
	The FIR Wiener Filter: Filtering, Linear Prediction, Noise		
	Cancellation, Lattice Representation for the FIR Wiener Filter		
	The IIR Wiener Filter: Noncausal IIR Wiener Filter, The Causal		
	IIR Wiener Filter, Causal Wiener Filtering, Causal Linear		
	Prediction, Wiener Deconvolution, Discrete Kalman Filter		
4	SPECTRUM ESTIMATION	[1],& [2]	10
	Nonparametric Methods: The Periodogram, Performance of the		
	Periodogram, The Modified Periodogram, Bartlett's Method		
	Welch's Method, Blackman-Tukey Approach Performance		
	Comparisons		

	Minimum Variance Spectrum Estimation,		
	The Maximum Entropy Method,		
	Parametric Methods: Autoregressive Spectrum Estimation,		
	Moving Average Spectrum Estimation, Autoregressive Moving		
	Average Spectrum Estimation:		
	Frequency Estimation: Eigendecomposition of the Autocorrelation		
	Matrix, Pisarenko Harmonic Decomposition MUSIC, Other		
	Eigenvector Methods		
	Principal Components Spectrum Estimation: Bartlett Frequency		
	Estimation, Minimum Variance Frequency Estimation,		
	Autoregressive Frequency Estimation		
5.	ADAPTIVE FILTERING	[2], & [1]	08
	FIR Adaptive Filters : The Steepest Descent Adaptive Filter, The		
	LMS Algorithm, Convergence of the LMS Algorithm, Normalized		
	LMS, Application : Noise Cancellation, Other LMS-Based		
	Adaptive Filters, Gradient Adaptive Lattice Filter, Joint Process		
	Estimator, Application : Channel Equalization , Adaptive		
	Recursive Filters , Recursive Least Squares: Exponentially		
	Weighted RLS, Sliding Window RLS,		
	Total Lecture Hours		42

Evaluation Scheme

Text Books

- **1.** Test 1 : 15 marks
- **2.** Test 2 : 25 marks
- **3.** Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 1. 10 Marks : Class performance, Tutorials & Assignments
 - 2. 10 Marks : Quizzes
 - 3. 5 marks : Attendance
 - 1. Hayes, M.H., "Statistical digital signal processing and modeling" Willey publishers
 - **2.** Proakis, John G. Digital signal processing: principles algorithms and applications. Pearson Education India.
 - 3. P.Stoica, and Randolph Moses "Spectral analysis of signals " PHI, Publishers

Reference Book

- 1. Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-time signal processing, 2nd edition, Pearson Education.
- 2. Mitra, Sanjit Kumar, and Yonghong Kuo. Digital signal processing: a computerbased approach, 2nd edition, Tata McGraw-Hill.
- **3.** Mitra, Sanjit Kumar, and Yonghong Kuo. Digital signal processing, 3rd edition, Tata McGraw-Hill.

RADAR AND SONAR SIGNAL PROCESSING

(Elective Subject)

Course Code:	13M1WEC432	Semester:	4 th Semester, M. Tech (ECE)
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

The objectives are to study the basics of a radar systems and its components and to aanalyse of radar systems.

Course Outcomes

After the successful completion of the course student should be able to:

- 1. Know the basic building blocks of a radar system.
- 2. Have an in-depth knowledge on different types of signals that are used.
- 3. Know about the ambiguity function and its significance in radar signal processing.
- 4. To know the principle of operation of sonar and sound propagation in water.
- 5. Apply the knowledge acquired in this course in real time applications.

Course Contents

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Introduction to radar and radar equation, radar wave propagation. Radar block diagram, resolutions in range velocity, radar equation, types of radars. Atmospheric effects on radar wave propagation. Radar cross section, radar displays.	Peebles	6
2.	CW and FM radar and MTI radar: Doppler radar, CW radar, FMCW radar, multiple frequencies CW radar, MTI radar, delay line cancellers, staggered pulse repetitive frequencies, pulse Doppler radar, limitations of MTI radar.	Skolnik	8
3	Radar waveforms: Matched filter, Pulse compression, ambiguity function, LFMCW, HFM waveforms, Doppler invariant waveforms.	Peebles	8
4	Radar antennas and radar tracking: Radar antennas and radar tracking Antenna basics, antenna arrays, analysis and synthesis of antenna arrays. Buttler's matrix, tracking of radar. Synthetic aperture radar.	Elliot	9
5	Radar transmitters and receivers: Noise figure, amplifiers, mixers, power dividers and phase shifters.	Pozar	8
6	Introduction to sonar: Under water propagation, types of sonar, sonar transducers.	Hansen	3
	Total Number of Lectures		42

Evaluation Scheme

- 1. Test 1 :15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1. Peebles, Peyton Z. Radar principles. John Wiley & Sons, 2007.
- 2. Skolnik, Merrill I. "Introduction to radar." Radar Handbook 2 (1962).
- 3. Elliot, Robert S. Antenna theory and design. John Wiley & Sons, 2006.
- 4. Pozar, David M. Microwave engineering. John Wiley & Sons, 2009.
- 5. Hansen, Roy Edgar. "Introduction to sonar." *Course Material to INF-GEO4310, University of Oslo, (Oct. 7, 2009)* (2009).

Reference Books

- 1. Stutzman, Warren L., and Gary A. Thiele. *Antenna theory and design*. John Wiley & Sons, 2012. Cheng, David Keun. *Field and wave electromagnetics*. Pearson Education India, 1989.
- 2. Hodges, Rich`ard P. "Introduction to Sonar." *Underwater Acoustics: Analysis, Design and Performance of Sonar*: 1-15.
- 3. Navigation, Guidance and control, NPTEL lectures by Debasish Ghose.

COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (Elective Subject)

Course Code:	17M1WEC332	Semester:	3 rd Semester, M. Tech (CSE/IT)
Credits:	3	Contact Hours:	L-3

Course Objectives

- 1. Fundamentals of key intelligent systems technologies including knowledgebased systems, neural networks, fuzzy systems, and evolutionary computation, and
- 2. Practice in integration of intelligent systems technologies for engineering applications.

Course Outcomes

This course provides the knowledge of analog and digital communication system analysis and design. After study through lectures and assignments, students will be able to

- 1. Gain a working knowledge of knowledge-based systems neural networks, fuzzy systems, and evolutionary computation;
- 2. Apply intelligent systems technologies in a variety of engineering applications;
- 3. Implement typical computational intelligence algorithms in MATLAB;
- 4. Present ideas and findings effectively; and
- 5. Think critically and learn independently

Course Contents

Unit	Topics	References	Lectures
		(chapter number,	
		page no. etc)	
1.	Introduction: Intelligence machines,	Eberhart& Shi	5
	Computational intelligence, paradigms Short history	S. Haykin N. Siyanandam	
		S. N. Deepa	
2.	Fuzzy Expert Systems: Rule-based expert system.		7
	Uncertainty management. Fuzzy Logic and Fuzzy	Eberhart& Shi	
	Relationships. Fuzzy sets and operations of fuzzy sets.	S. Haykin	
	Fuzzy rules and fuzzy inference. Fuzzy expert systems.	N. Sivanandam,	
	Adaptation of	S. N. Deepa	
	fuzzy systems. Case Studies		
3	Artificial Neural Networks: Fundamental neuro computing	Eberhart& Shi	9
	concepts: artificial neurons, activation functions, neural	S. Haykın	
	network architectures, learning rules. Supervised learning	N. Sivananuani, S. N. Deena	
	neural networks: multi-layer feed forward neural networks,	S. M. Deepa	
	simple recurrent neural networks, time-delay neural		
	networks, supervised learning algorithms. Unsupervised		
	learning neural		
	networks: self-organizing feature maps. Radial basis		
	and learning algorithms. Case studies		
	Evolutionary computation: Chromosomes.	Eberhart& Shi	7
4	fitness functions, and selection mechanisms. Genetic	S. Haykin	
	algorithms: crossover and mutation, Genetic programming.	N. Sivanandam,	
	Evolution strategies. Case studies	S. N. Deepa	
5	Swarm Intelligence: Foundations. cAnts, Termites, Gnats,	Eberhart& Shi	7
	Birds. Applications. Case Studies.	S. Haykin	
		N. Sivanandam,	
	Hybrid Intelligent Systems: Neural expert systems Neuro-	Eberhart& Shi	7
0	fuzzy systems. Evolutionary neural networks	S. Haykin	,
	1422, 5,500115. Evolutionally neural networks.	N. Sivanandam,	
		S. N. Deepa	

42

Evaluation Scheme

- 1. Test 1 : 15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1. 1 Computational Intelligence Concepts to Implementations by Eberhart& Shi
- 2. S. Haykin, Neural Networks A Comprehensive Foundation, Prentice Hall, 1999
- 3. N. Sivanandam, S. N. Deepa," Principals of soft Computing", Wiley India

Reference Books

- 1. Introduction to Genetic Algorithms by Melanie Mitchell
- 2. S. Russell and P. Norvig. Artificial Intelligence A Modern Approach, Prentice Hall, 2010
- 3. A.P. Engelbrecht, Computational Intelligence: An Introduction, 2nd Edition, John Wiley & Sons, 2012.
- 4. H.K. Lam, S.S.H. Ling, and H.T. Nguyen, Computational Intelligence and Its Applications: Evolutionary Computation, Fuzzy Logic, Neural Network and Support Vector Machine, Imperial College Press, 2011.

Digital System Design Using Verilog HDL

COURSE CODE: 21M11EC211 COURSE CREDITS: 3 CORE/ELECTIVE: CORE L-T-P: 3-0-0

Pre-requisite: Basic course in Digital Electronics & Logic Design Course

Objectives:

1. Designing digital circuits, behaviour and RTL modeling of digital circuits using verilog HDL, verifying these Models and synthesizing RTLmodels to standard cell libraries and FPGAs.

2. Students gain practical experience by designing, modeling, implementing and verifying several digital circuits.

Course Outcomes:

Sl. No.	Course Outcomes	Level of Attainment
1	To understand the constructs and conventions of the Verilog HDLprogramming.	Familiarity
2	To understand the structural, register-transfer level (RTL), and algorithmic levels of abstraction for modelling digital hardware systems.	Usage
3	To design and modelling of combinational and sequential digital systems (FiniteState Machines).	Usage, Assessment
4	To understand and apply the concept of test-benches to create testing behavioural environments for simulation based verification	Usage, Assessment

Course Contents:

Unit	Contents		
1	Introduction to Logic circuits and implementation technology: Logic gates, Boolean algebra, design examples, CAD tools, introduction to verilog, Programmable Logic devices and types, Optimized implementation of Logic Functions	3	
2	Verilog as HDL, Levels of design Description, Concurrency, Simulation and Synthesis, Functional verification, System Tasks, Programming Language Interface (PLI), Module, Simulation and Synthesis Tools, Test Benches	4	
	Introduction, Keywords, Identifiers, White Space Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Operators, AND Gate Primitive, Module Structure, Other Gate Primitives,		

3	Illustrative Examples, Tri-State gates, Array of Instances of Primitives, Design of Flip –Flops with gate primitives, Delays, Strengths and contention Resolution, Net Types, Design of BasicCircuits.MODELING AT DATA FLOW LEVEL: Introduction, Continuous Assignment Structures, Delays and Continuous Assignments, Assignment to vectors, Operators	7
4	BEHAVIORAL MODELING: Introduction, Operations and Assignments, Functional Bifurcation, Initial Construct, Always Construct, assignments with Delays, Wait Construct, Multiple Always Blocks, Designs at Behavioural Level, Blocking and Non-Blocking Assignments, The case statement, Simulation Flow if and if-else constructs, assign-design construct, repeat construct, for loop, the disable construct, while loop, forever loop, parallel blocks, force-release construct, Event.	4
5	Arithmetic circuits: number representation review, arithmetic circuits (adders and multipliers using CAD, Combinational circuit building blocks: Multiplexers, decoders, encoders, using verilog HDL.	4
6	Flip-Flops, Registers, Counters and Simple Processor: Latches, Flip-flops. Registers, counters and types, Reset Synchronization, Using Storage Elements in verilog HDL, Design Examples and timing concepts	6
7	Synchronous Sequential Circuits with verilog: BasicDesign Steps, One hot encoding, Mealy State Model, Moore tupe FSM Design of FSM using verilog, Design Examples, FSM as arbitrator circuit, ASM	6
8	Asynchronous sequential circuits: Behaviour, Analysis and synthesis, State Reduction, State assignment, Hazards, a complete design example	4
9	Digital System Design: Building Block circuits, clock synchronization concepts, various design examples, Testing of Logic Circuits: Fault models, path sensitizing, testing of sequential circuits, Built in self test: boundary scan	4
	Total lectures	42

Suggested Text Book(s):

- 1. Fundamentals of Digital Logic design with Verilog Design –Stephen Brown and Zvonko Vranesic, TMH, 2ndEdition,2010.
- 2. Advanced Digital Design with Verilog HDL –Michael D. Ciletti, PHI, 2005.

Suggested Reference Book(s):

Other useful resource(s):

- 1. T. R. Padmanabhan and B. Bala Tripura Sundari, Design through Verilog HDL Wiley,2009.(T1) .Zainalabdien Navabi, Verilog Digital System Design, TMH, 2ndEdition
- 2. Verilog HDL –Samir Palnitkar, 2ndEdition, Pearson Education, 2009.

Evaluation	Scheme:
------------	---------

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1	T-1	15	1 Hour.	Syllabus covered up to T-1
2	T-2	25	1.5 Hours	Syllabus covered up to T-2
3.	T-3	35	2 Hours	Entire Syllabus
4.	Teaching Assessment	25	Entire Semester	Assignment (2) - 10 Quizzes (2) - 10 Attendance - 5

Course outcomes (Digital System Design Using Verilog HDL)	PO- 1	PO- 2	PO- 3	PO- 4	PO- 5	PO- 6	РО- 7	PO- 8	РО- 9	PO- 10	РО- 11	PO- 12	Average
CO-1	3	3	3	3	2	2	3	3	2	3	3	3	2.75
CO-2	3	3	2	2	2	1	2	2	2	3	3	3	2.4
CO-3	3	3	3	2	2	1	2	3	2	3	3	3	2.5
CO-4	3	3	3	3	2	3	2	3	2	2	3	3	2.6
Average	3	3	2.75	2.5	2	1.75	2.25	2.75	2	2.75	3	3	

Artificial Intelligence and Expert Systems

COURSE CODE21M11EC212

COURSE CREDITS: 3

CORE/ELECTIVE: ELECTIVE

L-T-P: 3-0-0

Pre-requisite: Prerequisites are good programming skills, basic data structures and algorithms, and some university level mathematics.

Course Objectives:

- 1. To understand the concept of designing expert systems which exhibit intelligent behavior.
- 2. To study and create expert systems which exhibit the capability to learn, demonstrate, explain and advise its users.
- 3. To learn artificial intelligent systems finding solutions to complex problems.
- 4. To design human-like machines in a computer friendly manner.
- 5. To study State of the Art algorithms with engineering applications.

Course Outcomes:

S.No.	Course Outcomes	Level of Attainment
CO-1	To analyze the need and foundation of Artificial Intelligence and expert systems	Familiarity
CO-2	Study the various types of expert systems that receive precepts from the environment and perform actions	Assessment
CO-3	Analysis of problem solving, knowledge and reasoning	Assessment
CO-4	Study of application domains of Artificial Intelligence	Usage

Course Contents:

Unit	Contents	Lectures
		required
1	Introduction to Artificial Intelligence: What is Artificial Intelligence (AI), The	7
	foundations of AI, The birth of AI, Knowledge based Systems, The State of the	
	Art techniques.	
2	Intelligent Agents: Agents and Environments, The concept of Rationality,	7
	Performance Measures, The structure of Agents, Agent Programs, Simple reflex	
	Agents, Model based reflex Agents, Goal based Agents, Utility based Agents,	
	Learning Agents.	
3	Problem Solving: Problem solving Agents, Formulating Problems, Searching for	7
	Solutions, Uninformed Search Strategies, Breadth first search, Depth first search,	
	Depth limited Search, Bidirectional search,	

	Informed Search Exploration, Constraint Satisfaction Problems	
4	Knowledge and Reasoning: Knowledge based agents, Reasoning Patterns in	7
	Propositional Logic, Forward and Backward Chaining, Backtracking Algorithm,	
	First Order Logic, Knowledge Representation, Uncertain Knowledge and	
	Reasoning	
5	Learning: Laning from Observations, Forms of Learning, Inductive Learning,	7
	Learning Decision Trees, Ensemble Learning, Knowledge in Learning,	
	Statistical Learning, Reinforcement Learning	
6	Perception and Action: Communication as Action, Fundamental of	7
	Language, Syntactic Analysis, Semantic Interpretation, Probabilistic Language	
	Processing, Perceptual analysis, Robotic Hardware and software Architectures.	
Total lectu	ires	42

Suggested Text Book(s):

- 1. Stuart J. Russel and Peter Norvig, "Artificial Intelligence: A Modern Approach" Second Edition, Pearson Prentice Hall.
- 2. E. rich and K. Knight, "Artificial Intelligence and Applications" Third Edition, Tata McgrawHill.

Suggested Reference Book(s):

- 1. P. Kulkarni and P. Joshi, "Artificial Intelligence", PHI Learning Private Limited, 2015.
- 2. P. H. Winston, Artificial Intelligence and Applications", PHI Learning Private Limited, 2017.

Other useful resource(s):

Link to topics related to course:

- i. https://nptel.ac.in/courses/106105077/
- ii. https://www.tutorialspoint.com/artificial_intelligence/

Evaluation Scheme:

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1	T-1	15	1 Hour.	Syllabus covered upto T-1
2	T-2	25	1.5 Hours	Syllabus covered upto T-2
3.	T-3	35	2 Hours	Entire Syllabus
4.	Teaching Assessment	25	Entire	Assignment (2) - 10
			Semester	Quizzes (2) - 10 Attendance - 5

Course outcomes (Artificial Intelligence and Expert Systems)													A
CO-1	2	2	3	3	2	1	1	1	2	2	2	2	2
CO-2	2	3	3	3	2	1	1	1	2	2	1	2	2
CO-3	2	3	3	3	2	1	1	1	2	2	1	2	2
CO-4	2	3	3	3	2	1	1	1	2	3	2	2	2
Average	2	3	3	3	2	1	1	1	2	2	3	2	

Course Outcomes (COs) contribution to the Programme Outcomes(POs)

Network Security Protocols

COURSE CODE: 21M11EC213

COURSE CREDITS: 3

CORE/ELECTIVE: CORE L-T-P: 3-0-0

Pre-requisite: None

Course Objectives:

- 1. To understand the concept of network security.
- 2. Familiarization of various security protocols implemented at different layers.

Course Outcomes:

Sl. No.	Course Outcomes	Level of Attainment
CO-1	Understand the threats posed to network security and the more common attacks associated with those threats	Familiarity
CO-2	Understand the threats present in computer networks and counter measures for the same	Usage
CO-3	Analyzing the security protocols at different layers of the OSI model.	Usage
CO-4	Gain knowledge of authentication processes and security in the wireless networks.	Assessment

Course Contents:

Unit	Contents	Lectures required
1.	Introduction: Computer security concepts; OSI security architecture, Security attacks, Security mechanisms, A model for network security, Standards	5
2.	Understanding network security: Network security: Physical security, Pseudo security, Hardware security, Software security; Security services: Access control, Authentication, Confidentiality, Integrity, Non-repudiation; Security standards, Elements of security. DoS Attacks, Firewall and Intrusion prevention systems	8
3.	Security threats to Computer Networks: Introduction; Sources of security threats; Security threat motives; Security threat management; Security threat correlation; Security threat awareness.	6

4. Secu cons prote NAT	urity protocols in network layer: Security at different layers: pros and s; Internet protocol security (IPSec): IPSec security associations, IPSec tocols: AH and ESP, Tunnel versus transport mode, Incompatibility with T, Internet key exchange protocol.	6
5. Secu prote Ope	urity protocols in transport layer: Secure socket layer (SSL) handshake tocol: Steps in handshake, Key design ideas; SSL record layer protocol, enSSL, Transport layer security (TLS).	6
6. Secu Secu HTT elect	urity protocols in application layer: Pretty good privacy (PGP), ure/multipurpose internet mail extension (S/MIME), Secure-HTTP (S- TP), Hypertext transfer protocol over secure socket layer (HTTPS), Secure etronic transactions (SET), Kerberos.	6
7 Secu UM integ	urity in wireless networks and devices: GSM (2G) security, Security in ITS (3G), Wireless LAN security: authentication, confidentiality and grity.	5
	Total lectures	42

Suggested Text Book(s):

- 1. Cryptography and Network Security: principle and practices Wiliam Stallings.
- 2. Computer Network Security, Joseph Migga Kizza.
- 3. Cryptography, Network Security, and Cyber Laws / Bernard L. Menezes.

Suggested Reference Book(s):

Other useful resource(s):

Evaluation Scheme:

S. No	Exam	Marks	Duration	Coverage / Scope of Examination
1	T-1	15	1 Hour.	Syllabus covered up to T-1
2	T-2	25	1.5 Hours	Syllabus covered up to T-2
3.	T-3	35	2 Hours	Entire Syllabus
4.	Teaching Assessment	25	Entire Semester	Assignment (2) - 10 Quizzes (2) - 10 Attendance - 5

Course outcomes (Network security protocols)													
CO-1	1	2	2	2	3	1	1	1	1	2	2	3	1.75
CO-2	3	3	2	2	2	2	2	1	2	2	1	2	2
CO-3	3	1	2	1	2	2	2	2	2	3	1	1	1.83
CO-4	3	3	2	2	2	2	1	2	1	2	2	1	1.91
Average	2.5	2.25	2	1.75	2.25	1.75	1.5	1.5	1.5	2.25	1.5	1.75	

Course Outcomes (COs) contribution to the Programmed Outcomes (POs)

BIOMEDICAL SIGNAL AND IMAGE PROCESSING

(Core Subject)

Course Code:	15M1WEC231	Semester:	2 th Semester, M. Tech (ECE)
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

The objectives are to:

- 1. Introduce various bioelectric signals and medical imaging modalities.
- 2. Implementation of different signal and image processing techniques on the acquired biomedical signals and images.

Course Outcomes

After studying this course the students would gain enough knowledge

- 1. Able to understand different types of bioelectric signals and their acquisition from human body.
- 2. Able to understand different types of medical imaging modalities and would be able to differentiate them with respect to their advantages and limitations.
- 3. Acquire an ability to analyze and process bioelectric signals.
- 4. Acquire an ability to analyze and process medical images.
- 5. Understand different feature extraction techniques and classifiers used for image classification.

Course Contents

Unit	Topics	References (chapter	Lectures
1.	Bioelectric signals: Electrical activities of the cell and propagation of electric potential as a wave, Acquisition of bioelectric signals, Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), other biomedical signals: blood pressure, blood flow, Electrooculogram, respiratory signals, and ERG.	Kayvan: Chapter 8-12	12
2.	Medical Imaging modalities: Working principle, application and limitation of Computed tomography (CT), X-ray, Magnetic resonance imaging (MRI), Ultrasound imaging, and Positron emission tomography (PET).	Kayvan: Chapter 13-17	8
3	Digital Signal Processing: Introduction to processing and transformation of signals, Data Acquisition: Sampling in time, aliasing, interpolation, and quantization, Difference equations, FIR and IIR filters, basic properties of discrete-time systems, convolution, Discrete- time Fourier transform and its properties. FIR filter design using windows, discrete Fourier transform and its properties, fast Fourier transform (FFT), Sampling and aliasing in time and frequency, spectral analysis.	Kayvan: Chapter 1-2 Tamal: Chapter 1-2	10
4	Image Processing I: Extension of filtering and Fourier methods to 2-D signals and systems, Image enhancement and restoration, Edge Detection and Image Segmentation Techniques.	Kayvan: Chapter 3-4	10

5	Image Processing II: Introduction to extraction techniques, Clustering classification of images.	feature and	Kayvan: Chapter 7	5
		r	Fotal Number of Lectures	45

Evaluation Scheme

- 1. Test 1 :15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1. Kayvan Najarian, Robert Splinter: Biomedical Signal and Image Processing. CRC Press, 2012
- 2. Tamal Bose: Digital Signal and Image Processing. John Wiley & Sons, 2004

Reference Books

- 1. Biomedical Image Analysis, Rangaraj M. Rangayyan, CRC Press, New York
- 2. Digital Image Processing, RC Gonzalez & RE Woods, Pearson Publishers, Third Edition

ADVANCED DIGITAL IMAGE PROCESSING

(Elective Subject)

Course Code:	16M1WEC231	Semester:	8 th Semester, B. Tech (ECE)/ 2nd semester M. Tech
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

Major Learning Objectives are:

- 1. Describe and explain basic principles of digital image processing;
- 2. Design and implement algorithms that perform basic image processing (e.g., noise removal and image enhancement);
- 3. Design and implement algorithms for advanced image analysis (e.g., image compression, image segmentation)
- 4. Assess the performance of image processing algorithms and systems.

Course Outcomes

After Completing this course students will be able to:

- 1. Analyze general terminology of digital image processing.
- 2. Examine various types of images, intensity transformations and spatial filtering.
- 3. Develop Fourier transform for image processing in frequency domain.
- 4. Evaluate the methodologies for image segmentation, restoration etc.
- 5. Implement image process and analysis algorithms.
- 6. Apply image processing algorithms in practical applications.

Course Content

Unit	Topics	References (chapter number, page no. etc)	Lectures
1	Digital image fundamentals Fundamental steps in DIP, Components of digital image processing system, elements of visual perception, Structure of the human eye, Image formation in the eye, Brightness adaptation and discrimination, light, Image sensing and acquisition, Image formation model, definition and some properties of two dimensional system, Discrete 2D convolution, 2D discrete Fourier transform and its properties, optical and modulation transfer function, Spectral density function. Sampling and quantization of images, Two dimensional	Gonzalez and Woods Chapter -1 Pg 1 - 29 Chapter -2 Pg 34 - 70	7
	sampling theory, representation of digital image, Spatial and gray level resolution, Zooming and shrinking, some basic relationships between pixels.	Chapter -4 Pg 149 - 166	
2	Image Enhancement in spatial domain Gray level transformations, Piecewise linear transformation, Histogram processing, enhancement using Arithmetic/ logic operations, Basics of spatial filtering, Smoothing and sharpening spatial filters, Use of first order and second order derivative in	Gonzalez and Woods Chapter -3 Pg 76 - 130	7

	enhancement.		
3	Image Enhancement in frequency domain Two		
	dimensional Fourier transform,	Gonzalez and Woods	6
	properties of frequency domain,		U
	correspondence between filtering in spatial	Chapter -4	
	and frequency domain, Smoothing and	Pg 148 - 193	
	Sharpening frequency domain filters,		
	Homomorphic filtering		
4	Image Restoration		
	Model of image degradation/ Restoration	Gonzalez and Woods	
	process, Noise models, Noise reduction in		7
	spatial domain and frequency domain,	Chapter -5	/
	Inverse filtering, Wiener filtering.	Pg 221 - 261	
5	Image compression		
	Fundamentals of Image compression, Types		7
	of redundancy. Image compression model,	Gonzalez and Woods	-
	concepts of information theory, Fundamental		
	coding theorems, Estimation of entropy,	Chapter -8	
	Variable length coding, Huffman coding,	Pg 411 - 456	
	Near optimal variable length coding,		
	Arithmetic coding, LWZ coding, Bit plane		
	coding , constant area coding, run length		
	coding, Lossless predictive coding, image		
	compression standards (JPEG, JPEG2000)		
6	Image Segmentation		
	Detection of discontinuities (point, line edge),	Gonzalez and Woods	6
	Edge linking and boundary detection,		
	Thresholding, Basic global thresholding,	Chapter-10	
	Adaptive thresholding, Region based	Pg 568 - 615	
	segmentation, region growing, splitting and		
	merging.		

Evaluation Scheme

- 1. Test 1 :15 marks
- Test 2 : 25 marks
 Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

1. R.C.Gonzalas and R.E.Woods: Digital Image Processing, Prentice Hall, 3rd Ed

Reference Books

- A.K.Jain, Fundamentals of Digital Image Processing, Prentice Hall.
 S.Sridhar, Digital Image Processing, Oxford University Press.

ADVANCED CMOS DIGITAL DESIGN TECHNIQUES

(Core/ Elective Subject)

Course Code:	14M1WEC231	Semester:	2 nd Semester, M.Tech (ECE) and
			8 th Semester, B. Tech (ECE)
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

- 1. To study advanced concepts of CMOS Digital Design. It will be helpful for the students when they work in VLSI industries or in R&D's.
- 2. To cover crucial real world system design issues such as signal integrity, power dissipation, interconnect packaging, timing and synchronization.
- 3. To provide unique coverage of the latest design methodologies and tools.
- 4. To learn Low-power design concepts and voltage-frequency scaling.

Course Outcomes

This course provides the knowledge of Advanced CMOS Digital Design Techniques. After study through lectures and assignments, students will be able to do the

- 1. Modeling and estimation of R, C, and L parasitics, effect of technology scaling, sheet resistance, techniques to cope with ohmic drop and capacitive cross talk, estimating RC delay, and inductive effects.
- 2. Several lab team assignments to design actual VLSI subsystems from high level specifications, culminating in a course project involving the software design of a modest complexity chip.
- 3. Several homework assignments based on core concepts and reinforcing analytical skills learned in class.

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Introduction, The Wire, Coping with Interconnect: Impact of Interconnect Parasitic, Impact of Resistance, Impact of Capacitance, Cross-talk, Reducing RC-delay, Dealing with inductance.	Rabaey (Page 135-148, 445- 475)	5
2.	Designing Sequential Logic Circuits: Self Timed Circuit Design, Self Timed Signaling, Muller-C Element, Two Phase Handshake Protocol, Self Resetting CMOS, Synchronizer, Designing Latch and Edge triggered Register using different approach, Clock Overlaps, C2MOS Logic, TSPC Logic, Specialized edge triggered TSPCR, Pulse Registers, Pipelining, Designing Schmitt Trigger and multi-vibrators, Design Techniques for large Fan in, Sizing combinational circuits for minimum delay, Ratioed Logic: DCVSL, Pass transistor Logic, Differential Pass transistor Logic.	Rabaey (Chapter 10.4, 10.5, Chapter 7) Rabaey Page (261-273)	16
3	Arithmetic Circuits: Adders (Ripple-Carry Adder, Complimentary Static CMOS FullAdder, Mirror Adder, Transmission Gate Full Adder, Carry-Bypass Adder, Carry-Select Adder, Logarithmic Look-Ahead Adder, Tree Adders). Multipliers (Array Multiplier, Wallace-Tree Multiplier, Booths Multiplier Algo), Shifters (Barrel Shifter, Logarithmic Shifter).	Rabaey (Chapter 11) Uyemura (Chapter 12)	11

Course Contents

4	Semiconductor Memories: Memory Timing,	Rabaey (Chapter 12)	9
-	Memory Architecture, Read-Only Memory		
	Cells, MOS OR ROM, MOS NOR ROM, MOS		
	NAND ROM, Dual Data rate Synchronous		
	Dynamic RAM, DRAM Timing, Sources of		
	Power Dissipation in Memories, Data		
	Retention		
	in SRAM, Suppressing Leakage in SRAM, Data		
	Retention in DRAM.		
		Total Number of Lectures	41

Evaluation Scheme

- 1. Test 1 : 15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1. J. Rabaey, A. Chandrakasan; "Digital Integrated Circuits: A Design Perspective", 3rd and B. Nikolic Edition 2003.
- 2. John P. Uyemura;"Introduction to VLSI Circuits and Systems", John Wiley & Sons, Inc, 2002.

Reference Books

1. Sung-Mo Kang, Yusuf Leblebici,: CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw-Hill Edition 2003

Web Resources

- 1. URL1:- http://nptel.ac.in/courses/117106092/
- 2. URL2:- http://nptel.ac.in/courses/117106093/

REAL-TIME EMBEDDED SYSTEM

(Elective Subject)

Course Code:	12M1WEC232	Semester:	B.Tech.(8th Sem.), M.Tech. (2nd Sem.)
Credits:	3	Contact Hours:	L-3, T-0, P-0

Course Objectives

The objectives are to study

- 1. Introduction of the real-time systems.
- 2. Computing required for the real-time embedded systems.
- 3. Communication required for the real-time embedded systems.

Course Outcomes

After studying this course the students would gain enough knowledge

- 1. To present the mathematical model of the system.
- 2. To develop real-time algorithm for task scheduling.
- 3. To understand the working of real-time operating systems and real-time database.
- 4. To work on design and development of protocols related to real-time communication.

Course Contents

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Introduction: Applications of real-time systems, basic model and characteristics of a real-time system, safety and reliability, types of real-time tasks.	[1,chapter 1(1-22)], [2,3]	3
2.	Modeling Timing constraints: Timing constraints, events, classifications, modeling timing constraints.	[1,chapter 1(23-40)], [2,3]	3
3	Scheduling Real-Time Tasks: Task scheduling types, Types of Schedulers, clock driven, table-driven, Cyclic, EDF, RMA	[1,chapter 2(41-73)], [2,3]	5
4	Handling Resource sharing among real-time tasks: Resource sharing among real-time tasks, inversion, HLP,PCP	[1,chapter 3(74-97)], [2,3]	5
5	Scheduling Real-Time Tasks in Multiprocessor and Distributed systems: Multiprocessor task allocation, dynamic allocation of tasks, fault-tolerant scheduling of tasks, clocks in distributed real-time systems	[1,chapter 4(98- 104)], [2,3]	5
6	Real-time operating systems: Features of real- time operating systems, time services	[1,chapter 5(1-40)], [2,3]	4
7	Real-Time Communication: Types of networks, QoS, traffic categorization, LAN architecture, soft and hard real-time	[1,chapter 7(139- 177)], [2,3]	5
	communication, QoS framework, routing, resource reservation, rate control, QoS models.		
8	Real-Time Databases: Review, design issues, consistency, concurrency control, commercial real-time databases.	[1,chapter 8(178- 190)], [2,3]	4
9	Study of Practical Systems: Networked control systems, cyber-physical system, controller area network.	[1,chapter 8], [2,3]	3
		Total Lecture	42

Evaluation Scheme

- 1. Test 1 :15 marks

- Test 2 : 25 marks
 Test 3 : 35 marks
 Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

1. Rajib Mall, Real-Time Systems: Theory and Practice, Pearson Education, 2007.

Reference Books

1. C. Siva Ram Murthy and G. Manimaran, 'Resource Management in Real Time Systems and Networks', the MIT Press, 2001.

VLSI IN BIOMEDICAL SIGNAL PROCESSING

(Elective Subject)

Course Code:	17M1WEC331	Semester: 3 rd Semester, M. Tech (ECE)	
			PhD
Credits:	3	Contact Hours:	L-3, T-0,P-0

Course Objectives

The objective of the VLSI in Biomedical Signal Processing is to address the research, development and design problems and advance their solutions in VLSI circuits for embedded system and ubiquitous computing applications. The areas are Embedded System design, Power Electronics, Wireless networks; Signal processing, Biomedical Electronics, Electronic Instrumentation, and Audio and Speech Processing.

Course Outcomes

After studying this course the students would gain enough knowledge

- 1. Basic concepts in Digital CMOS circuit design.
- 2. To make an in depth study of DSP structures amenable to VLSI implementation.
- 3. To enable students to design VLSI system with high speed and low power.
- 4. Improve the speed of digital system through transformation techniques.
- 5. Perform pipelining and parallel processing in FIR/IIR systems to achieve high speed and low power.
- 6. Have knowledge of the principle operation and design and the background knowledge of biomedical instruments and specific applications of Biomedical engineering.

Course Contents

Unit	Тор	ics	References (chapter	Lectures
			number, page no. etc)	
1.	INTRODUCTION	TO COMPUTERS	Veeramachaneni : Chapter 1	2
	IN			
	MEDICINE : Characteris	tics of medical data,		
	What is a medical instrume	ent? Iterative definition of		
	medicine, Evolution of	t microprocessor-based		
	systems, The microco	mputer-based medical		
	Instrument, Generalised Ins	trumentation system, The		
	Amplifian Characteristics	f his modical signal		
	Circuit Enhancements	Electrical Interference		
	Peduction Filtering Artifa	et Peduction		
-	ADDERS · Review of F	xisting Adder Designs ·	Veeramachaneni : Chapter ?	6
2.	Ripple Carry Adder (RC	A) Carry Select Adder	veerunaenaneni : enapter 2	Ū
	(CSA). Carry Look-Ahead	Adder (CLA). Parallel		
	Prefix- based Adder	(PPA): Design and		
	Implementation of Efficient	Sum Computation Block		
	for Higher Bit Sparse	Adders; Design and		
	Implementation of Higher E	Bit Sparse Adder		
3	COMPRESSORS AND (COUNTERS : Existing	Veeramachaneni : Chapter 3	8
	Compressor Designs :	3-2 Compressor , 4-2		
	Compressor, 5-2 Compress	sor; Efficient Compressor		
	Designs using CMOS ; De	signs of Counters : $(3, 2)$		
	Counter, $(7, 3)$ Counter, (13)	(31, 5)		
	Counter; Design and Imp	dementation of Efficient		
	SIGNAL PRE-PROCESS	INC	TOMPKINS \cdot Chapter 3 A	7
4	SIGNAL CONVERSION	Sampling basics Simple	TOWN KINS . Chapter 5, 4	/
	signal conversion systems.	Conversion requirements		
	for biomedical signals, Si	gnal conversion circuits.		
	Lab: Signal conversion	,		
	SIGNAL AVERAGING : Ba	sics of signal averaging,		
	Signal averaging as a digita	l filter, A typical averager		
	, Software for signal ave	eraging, Limitations of		
	signal averaging .			
	SIGNAL COMPRESSOR/ L	DECOMPRESSOR		

DATA REDUCTION TECHNIQUES : Turning point algorithm, AZTEC algorithm , Fan algorithm , Huffman coding OTHER TIME- AND FREQUENCY-DOMAIN TECHNIQUES : The Fourier transform , Correlation, Convolution , Power spectrum estimation	
 5 BASICS OF FILTERING : Digital filters, The z transform, Elements of a digital filter, Types of digital filters, Transfer function of a difference equation, The z-plane pole-zero plot, The rubber membrane concept <i>FINITE IMPULSE RESPONSE FILTERS</i> : Characteristics of FIR filters, Smoothing filters, Notch filters, Derivatives, Window design, Frequency sampling, Min-max design , Lab: FIR filter design <i>INFINITE IMPULSE RESPONSE FILTERS</i> : Generic equations of IIR filters , Simple one-pole example, Integrators , Design methods for two-pole filters, Lab: IIR digital filters for ECG analysis <i>INTEGER FILTERS</i> : Basic design concept, Low- pass integer filters, High-pass integer filters, Bandpass and band-reject integer filters, The effect of filter cascades, Other fast-operating design techniques, Design examples and tools, Lab: Integer filters for ECG analysis <i>ADAPTIVE FILTERS</i>: Principal noise canceller model, 60-Hz adaptive cancelling using a sine wave model , Other applications of adaptive filtering 6 VLSI IN BSP : Digital signal processors, High- performance VLSI signal processors for biomedical signals, VLSI tools, Choice of custom, ASIC, or off-the-shelf components 	KINS : Chapter 5, 6, 12
Tota	l Number of Lectures 42

Evaluation Scheme

- 1. Test 1 :15 marks
- Test 2 : 25 marks 2.
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance & Assignments •
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

1. W.J. TOMPKINS, "BIOMEDICAL DIGITAL SIGNAL PROCESSING : C-Language Examples and Laboratory Experiments for the IBM® PC", 2000.

Reference Books

- 1. Sreehari Veeramachaneni, "Design of Efficient VLSI Arithmetic Circuits", PhD Thesis, International Institute of Information Technology, Hyderabad
- 2. K.K.Parhi, "VLSI Digital Systems", John-Wiley, 2007 Signal Processing
- 3. U. Meyer -Baese," Digital Signal Processing with FPGAs", Springer, 2004
- W.Burleson, K. Konstantinides, T.H. Meng," VLSI Signal Processing", 1996.
 R.J. Higgins, "Digital signal processing in VLSI", 1990.
- 6. S.Y.Kung, H.J. Whitehouse, "VLSI and modern signal processing", 1985
- 7. Carr and Brown, Biomedical Instrumentation.
- 8. Cromwell, Biomedical Instrumentation and Measurement, PHI.
- Neil Weste and David Harris, "CMOS VLSI Design", 4th Ed., Addison Wesley, 2011.
 Douglas A Pucknell et al, "Basic VLSI Design", 3rd Ed., Prenctice Hall, 2004

11. Sung-Mo Kang, Yusuf Leblebici : CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw-Hill Edition 2003

ANTENNA AND RADIO WAVE PROPAGATION

(Elective Subject)

Course Code:	12M1WEC231	Semester:	7 th Semester, B. Tech (ECE)
Credits:	3	Contact Hours:	L-3, T-0,P-0

Course Objectives

At the completion of this course, the student should have in depth knowledge antennas and radio wave propagation.

Course Outcomes

After the successful completion of the course, student should be able to:

- 1. Know the analysis of simple antenna structures.
- 2. Design different types of antennas.
- 3. Have an in-depth knowledge of antenna arrays and applications.
- 4. Apply the knowledge for wide area of recent applications.

Course Contents

Unit	Topics	References (chapter number, page no. etc)	Lectures
1.	Fundamental concepts: Types of antennas, radiation mechanism, antenna parameters.	Ballanis	8
2.	Radiation from wires and loops: Dipole, finite length dipole, half-wave dipole and its properties, loop antennas.	Ballanis	9
3	Aperture antennas: Field equivalence principle, radiation between wire and aperture antennas, horn antenna design principles.	Elliot	5
4	Broadband antennas: Principle of frequency dependent antennas, log periodic antennas	Elliot	4
5	Antenna arrays: Broadside, end-fire phased arrays. Dolph-Tchebyshev antenna arrays. Planar arrays.	Elliot	8
6	Radio-wave propagation: antenna located over a flat earth, over a spherical earth. Surface wave propagation, scattering by rain, propagation into sea water, atmospheric ducts and nonstandard	Collins	8
	refraction.		
Total Number of Lectures			

Evaluation Scheme

- 1. Test 1 :15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Books

- 1. Elliot, Robert S. Antenna theory and design. John Wiley & Sons, 2006.
- 2. Ballanis, Constantine A. "Antenna theory analysis and design." *John Willey and Son's Inc., New York* (1997).
- 3. Collin, Robert E. Antennas and radiowave propagation. McGraw-Hill, 1985.

Reference Books

- 1. Jordan, E. C., and K. G. Balmain. *Electromagnetic Waves and Radiating Systems*, Prentice Hall." *Englewood Cliffs, New Jersey* (1968).
- 2. Robert E.Colin. Foundations for Microwave Engineering, McGraw Hill, 2nd Edition, 2001.
- 3. John D. Kraus & R.J Marhefka, *Antennas for all appl*ications, The McGraw-Hill Companies, 2nd/3rd edition, 2006
- C.A. Balanis, Antenna Theory, Analysis and Design. NY: John Wiley and Sons, 2nd edition, 2002
- WL Stutzman & GA Thiele, Antenna Theory and Design, John Wiley and Sons, 2nd edition,1997

ANTENNA THEORY AND TECHNIQUES

(Elective Subject)

Course Code:	13M1WEC334	Semester:	3 rd Semester, M. Tech (ECE)
Credits:	3	Contact Hours:	L-3

Course Objectives

- 1. Understanding of antenna fundamentals
- 2. Ability to design, synthesize and analyze the performance of various antenna types.

Course Outcomes

- 1. The ability to understand important and fundamental antenna engineering parameters and terminology.
- 2. To learn the basic concepts of electromagnetic wave radiation and reception.
- 3. Be familiar with important classes of antennas and their properties and to gain the ability to pick a particular class of antenna for given specifications.
- 4. To develop the basic skills necessary for designing a wide variety of practical antennas and antenna arrays.
- 5. Be familiar with techniques for estimating the propagation performance of a communication channel.
- 6. Be able to define specifications for a communications system based on a set of requirements.

Course Contents

Unit	Topics	References (chapter	Lectures
		number, page no. etc)	
1.	Electromagnetic Radiation: Radiation	C. A. Balanis	
	phenomenon from an oscillation dipole in free	J. D. Kraus and R. J.	
	space, induction and radiation fields, Retarded	Marneika	
	potentials, Radiated power and radiation		
	resistance from a short dipole, half wave dipole		
	and quarter wave monopole.		
2.	Antenna Basics: Directional properties of	C. A. Balanis	
	antennas, Radiation patterns, antenna gain and	J. D. Kraus and R. J.	
	aperture, antenna terminal impedance, self and	Marneika	
	mutual impedance, front to back ratio, antenna		
	beam width and bandwidth, antenna efficiency,		
	antenna beam area, polarization linear		
	polarization, circular and elliptic polarization,		
	antenna temperature and Reciprocity properties		
	of antennas, Friss equation.		
3	Auxilliary Potentials Functions and Linear	C. A. Balanis	
	Wire Antennas: Vector potential A and F,	J. D. Kraus and R. J.	
	Electric and Magnetic Fields for Electric	Mainerka	
	and Magnetic Current sources, Duality		
	Infinitesimal Dipole Finite length dipole Half		
	wave dipoles		
	Antenna Arrays: Classification of arrays, linear	C. A. Balanis	
	arrays of two point sources, linear arrays of n-	J. D. Kraus and R. J.	
	point sources, pattern multiplication, array	Marhefka	
	factor, linear arrays of equal amplitude and		
	spacing (Broadside and end fire arrays) of n-		
	point sources, directivity and beam width.		
5	Antenna Arrays: Analysis and Synthesis: Linear	C. A. Balanis	
3	arrays, circular array, planar (2D) arrays, sum	J. D. Kraus and R. J.	
	and difference patterns, Effect of mutual	Marhefka	
	couplings, Phased array antennas, scan		

	principles, Non-uniform arrays, Dolph-		
	Chebyshev Arrays, Binomial Arrays.		
6	Analysis and Design of Anteena: Resonant Antennas: Wires and Patches, Yagi - Uda Antennas, Micro strip Antenna, horn antennas, Parabolic reflector antenna principles, offset parabolic reflectors, dual reflector antennas, Gain calculations for reflector antennas, feed antennas for reflectors, field representations, matching the feed to the reflector, general feed model, feed antennas used in practice. Broad band Antennas: Traveling - wave antennas, helical antennas, Biconical antennas, sleave antennas, and Principles of frequency - independent Antennas, spiral antennas, Log – Periodic antenna, fractal antenna.	C. A. Balanis J. D. Kraus and R. J. Marhefka	
	r	Fotal Number of Lectures	

Evaluation Scheme

- 1. Test 1 : 15 marks
- 2. Test 2 : 25 marks
- 3. Test 3 : 35 marks
- 4. Internal Assessment : 25 marks
 - 10 Marks : Class performance, Tutorials & Assignments
 - 10 Marks : Quizzes
 - 5 marks : Attendance

Text Book

- 1. Antenna Theory Analysis and Design, C. A. Balanis, 3rd Ed, 2005, John Wiley & Sons Inc.
- 2. Antennas for All Applications, J. D. Kraus and R. J. Marhefka, 3rd Ed., 2002, McGraw-Hill, Inc.

Reference Books

- 1. Antennas and Radio wave Propagation, R. E. Collin, 1985, McGraw-Hill, Inc.
- 2. Antenna Theory and Microstrip Antennas, D. G. Fang, 2010, CRC Press.
- 3. Electromagnetic waves and Radiating Systems, E. C. Jordan and Balmain, Pearson Education.

Analog IC Design

COURSE CODE:21M1WEC245 COURSE CREDITS: 3 CORE/ELECTIVE: CORE L-T-P: 3-0-0

Pre-requisite:

Student must have a very good understanding of circuit analysis, electronics, electronic devices and models, and analog circuit design.

Course Objectives:

This course deals with design of analog integrated circuits with emphasis on the design of feedback circuits at the transistor level. The objective of this course is to provide in-depth understanding of the analog integrated circuit and building blocks

Course Outcomes:

S.No.	Course Outcomes	Level of Attainment
CO-1	Able to carry out research and development in the area of analog	Familiarity
	IC design.	
CO-2	Able to analyze and design analog circuits such as Differential	Assessment
	Amplifier, OP-AMP, Current mirrors, Biasing circuits.	
CO-3	Able to analyze and design mixed mode circuits such as	Assessment
	Comparator, ADCs, DACs, PLL.	
CO-4	Solve practical and state of the art analog IC design problems to	Usage
	serve VLSI industries.	

Course Contents:

S. No.	Contents	Contact
		Hours
	Negative feedback systems and stability Negative feedback amplifier using an	
	integrator; Frequency and time domain behavior; Loop gain and its implications;	
	Negative feedback amplifier realization; Finite DC gain; Increasing DC gain;	
1.	Effect of multiple poles; Negative feedback systems with multiple poles and zeros	8
	in the forward path; Stability analysis using Nyquist criterion; Nyquist criterion;	
	Loop gain-Bode plot and time domain interpretation; Significance of 60 degree	
	phase margin	

2.	Op-amp at the block level; Frequency compensation Concept of the op-amp for realizing negative feedback circuits; Realizing a multi stage op-amp-frequency compensation-miller op-amp; Realizing a multi stage op-amp; feed forward compensated op-amp; Op-amp as a general block; unity gain compensation; non-idealities swing limits, slew rate, offset; dc negative feedback around op-amps	6
3.	Op-amp amplifiers Amplifier using Miller compensated op-amp; Effect of input capacitance; gain bandwidth product; Trans-impedance amplifier; lead-lag compensation; Inverting and non-inverting amplifiers-CMRR and its importance	4
4.	Components available on an IC IC components and their models; Mismatch; Layout considerations	3
5.	Single ended op-amp design Realizing a single stage op-amp-diff pair; small signal ac analysis; Single stage op-amp-mismatch and noise;-Single stage op-amp-telescopic cascode; Replica biasing a cascode;-Single stage op-amp-folded cascode; Two stage miller compensated op-amp; Three stage op-amp; CMRR of an op-amp and op-amp circuits	8
6.	Fully differential op-amp design Fully differential op-amps; Differential and common mode half circuits; common mode feedback; Fully differential miller compensated op-amp-common mode feedback loop and its stability; Fully differential single stage opamp; Fully differential telescopic cascode op-amp; Fully differential feed-forward compensated op-amp	5
7.	Phase locked loopFrequency multiplier-Phase locked loop;Lock rangelimitations;type II loop;Jitter & Phase noise;Continuous time approximation;PLL transfer functions;Reference feed through spurs;LC oscillators	8
	Total	42

Suggested Text Book(s):

- 1. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw-Hill Edition 2006
- 2. Gray & Meyer, "Analysis & Design of Analog Integrated Circuits", Wiley 4th edition, ,2001.

Suggested Reference Book(s):

- 1. Jacob Baker, "CMOS Mixed Signal Circuit Design", John Wiley.
- 2. Gray, Wooley, Brodersen, " Analog MOS Integrated Circuits ", IEEE Press, 1989.
- **3.** Kenneth R. Laker, Willy M.C. Sansen, William M.C.Sansen, "Design of Analog Integrated Circuits and Systems ", McGraw Hill.

Other useful resource (s):

https://nptel.ac.in/courses/117/106/117106030/

(Dr. Nagendra krishnapura, IIT Madras)

Department of Electronics and Communication Engineering

Evaluation Scheme:

S. No	Exam	Marks	Duration	Coverage / Scope of Examination				
1	T-1	15	1 Hour.	Syllabus covered upto T-1				
2	T-2	25	1.5 Hours	Syllabus covered upto T-2				
3.	T-3	35	2 Hours	Entire Syllabus				
4.	Teaching Assessment	25	Entire Semester	Assignment (2) - 10				
				Quizzes (2) - 10				
				Attendance - 5				

Course Outcomes (COs) contribution to the Program Outcomes (POs)

Course outcomes (Analog IC Design)	P0-1	P0-2	PO-3	PO-4	P0-5	PO-6	P0-7	PO-8	PO-9	PO-10	PO-11	PO-12	Average
CO-1	3	3	3	3	3	1	1	2	2	2	1	1	2.1
CO-2	2	2	2	2	1	1	2	2	2	2	1	2	1.8
CO-3	3	3	3	3	2	1	1	3	2	3	3	2	2.4
CO-4	3	2	3	3	1	1	2	1	1	3	2	1	1.9
Average	2.75	2.5	2.75	2.75	1.75	1.0	1.5	2.0	1.75	2.5	1.75	1.5	