COURSE STRUCTURE M.SC. (MICROBIOLOGY)

EFFECTIVE FROM ACADEMIC SESSION – 2021-22

M. SC. (MICROBIOLOGY) PROGRAM

S.No.	New Code	Subject	L-T-P	Credits
1	21MS1MB111	General Microbiology and Bacteriology	3-0-0	3
2	20MS1MA111	Basics of Mathematics and Statistics	2-0-0	2
3	20MS1BT111	Biochemistry	3-0-0	3
4	21MS1MB112	Molecular Biology	3-0-0	3
5	20B1WBI831	Virology	2-0-0	2
6	21MS1MB113	Fungal Biology	2-0-0	2
7	21MS7MB171	General Microbiology and Bacteriology Lab	0-0-4	2
8	21MS7BT171	Biochemistry Lab	0-0-2	1
9	21MS7MB172	Molecular Biology Lab	0-0-4	2
10	21MS7MB173	GLP and Bioinstrumentation Lab	0-0-2	1
		Total	27	21

I st SEMESTER (MBI)

II nd SEMESTER (MBII)

S.No.	New Code	Subject	L-T-P	Credits
1	18MS1BT211	Immunology and Immunotechnology	3-0-0	3
2	21MS1MB211	Enzymes and Bioprocess Technology	3-0-0	3
3	21MS1MB212	Microbial Genetics and Physiology	3-0-0	3
4	18MS1BT313	Recombinant DNA Technology	3-0-0	3
5	20MS1BT213	Bioinformatics	2-0-0	2
6	18MS7BT211	Immunology and Immunotechnology Lab	0-0-2	1
7	21MS7MB271	Enzymes and Bioprocess Technology Lab	0-0-2	1
8	18MS7BI214	Basic Bioinformatics Lab	0-0-2	1
9	18MS7BT373	Recombinant DNA Technology lab	0-0-4	2
10	18MS9BI211	Masters Research Review seminar	0-0-2	1
		Total	26	20

III rd SEMESTER (MBIII)

S.No.	Code	Subject	L-T-P	Credits
1	21MS1MB311	Environmental Microbiology	3-0-0	3
2	21MS1MB312	Diagnostic Microbiology and vaccines	3-0-0	3
3		Elective-I	3-0-0	3
4	21MS9MB311	Master's Dissertation & Thesis Part-I	0-0-16	8
		Total	25	17

IV th SEMESTER (MBIV)

S. No.	New Code	Subject	L-T-P	Credits
1	21MS1MB411	Food & Dairy Microbiology MBIV	3-0-0	3
2	21MS1MB412	Plant and Agricultural Microbiology MBIV	3-0-0	3
3		Elective-II	3-0-0	3
4	21MS9MB411	Master's Research Thesis Part-II	0-0-16	8
		Total	25	17

Total Credits: 75

	ELECTIVE - 1				
S. No.	New Code	Subject	L-T-P	Credits	
1	21MS2MB311	IPR, Biosafety and Bioethics	3-0-0	3	
2	21MS2MB312	Biosensors: Principles & Applications	3-0-0	3	
3	21MS2MB313	Computational Systems Biology	3-0-0	3	
4	21MS2MB314	Protein Engineering	3-0-0	3	

ELECTIVE - 2				
S. No.	New Code	Subject	L-T-P	Credits
1	21MS2MB411	Microbial Toxicology MBIV	3-0-0	3
2	21MS2MB412	Experimental models in microbial Research MBIV	3-0-0	3
3	21MS2MB413	Nano-Biotechnology MBIV	3-0-0	3
4	21MS2MB414	QC Analysis and Management MBIV	3-0-0	3

Ist SEMESTER (MBI)

GENERAL	Course Objectives	Students Learning outcomes
	Course Objectives	Students Learning outcomes
MICROBIOLOGY	To acquaint the students with the	Students should be able to:
AND	development and techniques of	•Acquire the principles of
BACTERIOLOGY	microbiology useful in	Microbiology and fundamental
COURSE CODE:	biotechnology industry. Scientific	concepts related to microbial
21MS1MB111	evaluation of various characteristics	classification and methods
L-T-P: 3-0-0	of icroorganisms, especially	 Scientifically test the hypothesis
	bacteria their metabolism and role	provided under a given situation
Credits: 3	in various domains of life.	involving microbial world and
		demonstrate practical skills in
		-
		basic microbiological techniques
		including growth and control of
		bacteria.
		• Analyze and interpret the
		experiments/pathways relevant
		to bacterial analysis
		• Design of a set of the
		Designate vital role of the
		bacteria in the environment and
		their genetics and association
		with human beings.
		• Retrieve and use cotemporary
		information and industrial
		potential
		related to microbial world.

Syllabus:

Unit	Topics Covered	
Unit 1: Introduction,	Introduction, history and scope of Microbiology. General	
history and scope of	characteristics and composition of Prokaryotes and Eukaryotes.	
Microbiology	Classification of Microorganisms: Haeckel's three kingdom	
4 lectures	concept, Whittaker's five kingdom concept, three domain concept	
	of Carl Woese, classification and salient features of bacteria	
	according to Berger's Manual of Determinative Bacteriology.	
	Nomenclature and	
	modern methods of Bacterial taxonomy.	
Unit 2: Morphology and	Morphology and ultra-structure of bacteria: size, shape, and	
Anatomy of bacteria	arrangement of bacteria, ultra-structure of bacterial cell wall of	
6 lectures	eubacteria and archeabacteria. Protoplast and spheroplast formation	
o lectures	and L-form. Components external to cell wall: Structure and	
	function of flagella, fimbriae and pilli, capsule- types, composition	
	and function, slime layers, S-layers. Prokaryotic cell membrane	
	and	
	cytoplasmic matrix – cell membrane structure and function	
	of bacteria and archaebacteria, mesosomes, ribosomes, cytoplasmic	
	inclusion bodies (polyhydroxy butyrate, polyphosphate granules,	
	oil droplets, cyanophycean granules) and nucleoid. Bacterial	
	response to external stimulus and bacterial endospores: Chemotaxis	
	and phototaxis structure, formation and germination of bacterial	

	endospore.	
Unit 3: Analytic techniques and control measures in bacteriology 7 lectures	Staining methods: fixation, types of dyes, simple staining, differential staining - Gram and Acid-fast staining, staining of specific structures capsule, flagella and spore staining Control of microorganisms: Microbial death curve, concept of bio-burden, thermal death time and decimal reduction time. Factors influencing the effectiveness of antimicrobial agents. Control of bacteria by physical agents: heat - moist and dry, filtration and radiation. Chemical control of microorganisms: Halogens, phenol and other phenolic compounds, heavy metals, alcohols, ethylene oxide and aldehydes	
Unit 4: Bacterial growth and kinetics 7 lectures	Bacterial nutrition: Basic nutritional requirements, growth factors, nutritional categories, physical requirements of bacterial growth. Bacteriological media: types (complex, synthetic, differential, enrichment and selective media) and their uses, culture characteristics of bacteria on different media. Cultivation of bacteria: aerobic and anaerobic culture, pure culture techniques, shaker and still culture, maintenance and preservation of microbial culture. Bacterial growth: growth kinetics, growth curve. Batch, continuous and synchronous culture. Measurement of growth and influence of environmental factors affecting growth.	
Unit 5: Bacterial reproduction and genetics 7 lectures	Influence of environmental factors affecting growth.General concept of Prokaryotic and Eukaryotic genome. Genomeof E. coli. Genetic recombination and transformation.Transduction: generalized and specialized transduction, phageconversion. Plasmid: types and their significance. Conjugation andchromosomal mobilization. E. coli as model prokaryotes.	
Unit 6: Bacterial epidemiology and diseases 5 lectures	Human diseases caused by bacteria; The epidemiology,	
Unit 7: Microbial Ecology and Industrial applications 6 lectures	Thermophiles, Alkaliphiles, Acidophiles, Halophiles, Psychrophiles, Radiophiles, Fermented foods and beverages, Biofertilizers, Biopesticides, Biofuels and Bioenergy	

- 1. Prescott, Harley and Klein: Microbiology, 6th Edition, McGraw Hill 2005.
- 2. Pelczar, Chan and Krieg: Microbiology by; Tata McGraw Hill.
- 3. Madigan, M.T., Martinko, J.M., Parker, J: Brock Biology of Microorganisms. 10th Edition.: Publisher: Prentice Hall 2003
- 4. Gerard J. Tortura, Berdell R. Funke, and Christine L: Microbiology An Introduction: Case. 8th Ed., Pearson/Benjamin Cummings, 2004.
- 5. Nester: Microbiology Study Guide McGraw Hill.
- 6. Black: Microbiology: Principles and Applications Prentice Hall

Basics of	Course objective	Students Learning Outcomes
Mathematics and		On completion of this course,
Statistics	The objective of this course is to	students should be able to:
COURSE CODE:	give conceptual exposure of	 Gain broad understanding in
20MS1MA111	essential contents of mathematics	mathematics and statistics;
L-T-P: 2-0-0	and statistics to students for	 Recognize importance and value
	application in biological sciences	of mathematical and statistical
Credits 2		thinking, training, and approach
		to problem solving, on a diverse
		variety of disciplines.

Unit I Algebra 8	Linear equations, functions: slopes-intercepts, forms of two-variable	
lectures	linear equations; constructing linear models in biological systems;	
	quadratic equations (solving, graphing, features of, interpreting	
	quadratic models <i>etc.</i>), introduction to polynomials, graphs of binomials	
	and polynomials; Symmetry of polynomial functions, basics of	
	trigonometric functions, Pythagorean theory, graphing and constructing	
	sinusoidal functions, imaginary numbers, complex numbers, adding-	
	subtracting-multiplying complex numbers, basics of vectors,	
	introduction to matrices.	
Unit II Calculus 6	Differential calculus (limits, derivatives), integral calculus (integrals,	
lectures	sequences and series etc.).	
Unit III	Population dynamics; oscillations, circadian rhythms, developmental	
Mathematical	patterns, symmetry in biological systems, fractal geometries, size-limits	
models in biology 6	& scaling in biology, modelling chemical reaction networks and	
lectures	metabolic networks.	
Unit IV Statistics 8	Probability: counting, conditional probability, discrete and continuous	
lectures	random variables; Error propagation; Populations and samples,	
	expectation, parametric tests of statistical significance, nonparametric	
	hypothesis tests, linear regression, correlation & causality, analysis of	
	variance, factorial experiment design.	

1. Stroud, K. A., & Booth, D. J. (2009). Foundation Mathematics. New York,

NY: Palgrave Macmillan.

2. Aitken, M., Broadhursts, B., & Haldky, S. (2009) *Mathematics for Biological Scientists*. Garland Science.

- 3. Billingsley, P. (1986). Probability and Measure. New York: Wiley.
- 4. Rosner, B. (2000). Fundamentals of Biostatistics. Boston, MA: Duxbury Press.
- 5. Daniel, W. W. (1987). *Biostatistics, a Foundation for Analysis in the Health Sciences*. New York: Wiley.

	Course objective Following are the	Students Learning outcomes
Biochemistry	objectives of Biochemistry course.	After learning and completion of
COURSE	• To understand the basic biochemical	Biochemistry course, student will be
CODE:	processes and their principles those	able to:
20MS1BT111	govern complex biological systems.	 Define the structural features of
L-T-P: 3-0-0	• To understand the structure, functions	basic biomolecules
	of essential biomolecules and their	 Describe the functionality of
Credits 3	interactions with each other.	biomolecules in relation to their
	• To understand the various metabolic	usage for steady state of an
	and energy generation processes which	organism.
	are essential for	• Get complete understanding of
	sustainability of life.	metabolic processes and their
		integration with each other.

Unit/ Module	Description		
Unit I:	Chemical basis of life: Miller-Urey experiment, abiotic formation of		
Origin of Life	amino acid oligomers, composition of living matter; Water and its		
(Biochemical basis) 4	essential role for life, pH and its regulation in relation to microorganisms		
lectures			
Unit II: Biomolecules	Carbohydrates: Classification, basic chemical structures and their role in		
in Microbial world	microbial life.		
8 lectures	Lipids: Classification, structure and function of major lipid subclasses in		
	microbe's especial consideration bacterial membranes. Proteins: Amino		
	acids: Classification, Properties, Protein Structure: primary, secondary,		
	tertiary and quaternary structure, basics of enzymes and their catalysis.		
	Nucleotides: Nucleotides, Nucleosides structures, Different confirmations		
	of DNA		
Unit III: Microbial	Microbial metabolic diversity and classification based on nutritional types.		
nutrition and basic	Transport Mechanisms across membrane: Diffusion, facilitated Diffusion,		
biochemical process	Active and passive transport.		
for growth			
4 lectures			
Unit IV: Central	Bacterial aerobic respiration, Embden-Meyerhof pathway, Entner-		
Metabolic	Doudoroff pathway, Pentose phosphate pathway, Tricarboxylic acid cycle,		
Pathways and	components of electron transport chain, chemiosmotic theory, oxidative		
Carbohydrate	and substrate level phosphorylation, , Utilization of sugars other than		
metabolism	glucose and complex polysaccharides. Bacterial anaerobic respiration and		
10 lectures	fermentation		
Unit IV: Metabolism	Biosynthesis and degradation of fatty acids and phospholipids,		
of lipids and	lipopolysaccharide biosynthesis		
hydrocarbons:			
6 lectures			
Unit V: Protein and	Metabolism of amino acids: Amino acid biosynthesis and utilization,		
amino-acid metabolism	lysine and glutamine overproduction, polyamine biosynthesis and		
6 lectures	regulation.		
Unit VI: Metabolism	Purine and pyrimidine biosynthesis, regulation of purine and pyrimidine		
of nucleotides	biosynthesis, inhibitors of nucleotide synthesis.		
4 lectures			

- 1. J M Berg, L Stryer, J Tymoczko, G Gatto, "Biochemistry", 9th Ed., (2019) W H Freeman
- 2. D L Nelson and MM Cox, "Lehninger Principles of Biochemistry", 7th Ed. (2017) WH Freeman
- 3. J Willey, L Sherwood, C J Woolverton "Prescott's Microbiology", 10th Ed., (2016) Mc GRaW-Hill

	Course objective	Students Learning outcomes
Molecular Biology COURSE CODE: 21MS1MB112 L-T-P: 3-0-0	The objective of this course is to equip students with detailed knowledge of molecular biology, applications of molecular biology, and enhance their abilities to understand modern research and developments in the life science	 On successful completion of this course, student will be able to: Understand physical and chemical properties nucleic acids Develop deep understanding about
Credits 3	sector.	 DNA replication, damage and repair Understand the processes of transcription and translation at molecular level
		• Will recognize the different mechanism of gene regulation in microbial systems
		• Will get apprised with different molecular biology techniques and their applications in modem research and life science sector

Unit I	Introduction to molecular Biology; Chemical and physical properties of Nucleic acids	
Chemical and		
Physical Properties		
of Nucleic acids		
of fucicit actus		
3 lectures		
Unit II	DNA replication, Nature of replication, Enzymes and proteins	
	involved, Replication Fork and priming, leading and lagging strand,	
DNA replication	Process of Replication: initiation elongation, termination, specific	
Damage and repair	features of replication in Prokaryotes, fidelity of replication, inhibitors	
0.1	of replications and their applications, DNA damage repair and	
8 lectures recombination: DNA damage, DNA Mismatch Repair, Doubl		
	Break Repair, Homologue and site-specific recombination,	
Unit III	Transcription: Transcription machinery of prokaryotes, various	
	transcription enzymes and cofactors, initiation, elongation and	
RNA synthesis and	termination, sigma factors, post-transcriptional processes: RNA	
processing	processing, splicing, capping and polyadenylation, rRNA and tRNA	
8 lectures	processing, RNAi and miRNAs, post-transcriptional gene regulation.	
Unit IV	Translation: Mechanisms of translation in prokaryotes, initiation	
	complex, ribosomes and tRNA, factors, aminoacylation of tRNA,	
Protein synthesis	tRNA-identity, aminoacyl tRNA synthetase, and translational proof-	
and processing		
1	reading, translational elongation and termination, inhibitors of	
8 lectures	translation	

Unit V	Control of gene expression at transcription and translation level
Gene Regulation expression	regulating the expression of phages, viruses, prokaryotic and
8 Lectures	
Unit VI	Labelling of DNA: nick translation, random priming, radioactive and
Molecular	non-radioactive probes, Hybridization techniques: northern, southern,
Biology	fluorescence in situ hybridization, Polymerase chain reaction and its
Techniques	variations
7 Lectures	

Suggested Text Book(s):

- 1. Lehninger "Principles of Biochemistry".
- 2. Principles of Genetics D. Peter Snustad, Michael J. Simmons

Suggested Reference Book(s):

- 1. Lewin's GENES XI
- 2. Lodish H, Berk A, Zipursky LS, Matsudaira P, Baltimore D, Darnell J (2000). Molecular Cell Biology.
- 3. W. H. Freeman and Company
- 4. Molecular Biology of the Gene by J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M. Levin, R. Losick, 6th edition, Benjamin Cummings, San Francisco, USA, 2007.
- 5. Molecular Biology by R.F. Weaver, 4th edition, McGraw Hill. New York. USA, 2007.
- Molecular Biology of the Cell by B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, 5th edition, Garland Science, New York and London, 2007. 5.

CODE: 20B1WB831 L-T-P: 2-0-0	Course Objectives To acquaint the students with the development and techniques of virology useful in biotechnology industry. Scientific evaluation of various characteristics of viruses, their metabolism and role in various domains of life.	 Students Learning outcomes Students should be able To acquire the knowledge about fundamental concepts related virology and its history Scientifically test the hypothesis provided under a given situation involving microbial world and demonstrate practical skills in basic virological techniques including growth and control of viruses Analyze and interpret the experiments/pathways relevant to virus analysis
------------------------------------	---	--

Unit 1	Brief outline on discovery and origin of viruses. General properties of viruses, Classification and general properties of major families of viruses	
Introduction and classification of viruses		
4 Lectures		
Unit 2	Morphology and ultra-structure of viruses, capsid and their	
Structure and morphology of viruses	arrangements, types of envelopes and their composition, measurement of viruses. Viral genome; their types and structure, viral related agents-viroids and prions.	
4 Lectures		
Unit 3 Cultivation and analytical techniques in virology 7 Lectures	Cultivation of viruses in embryonated eggs, experimental animals, and cell cultures; primary and secondary cell cultures; suspension cell cultures and monolayer cell cultures; cell strains, cell lines and transgenic systems; serological methods – haemagglutination and HAI; complement fixation; immunofluorescence methods, ELISA and Radioimmuno assays; assay of viruses – physical and chemical methods (protein, nucleic acid, radioactivity tracers, electron microscopy) – Infectivity assay (plaque method, end point method) – Infectivity assay of plant viruses.	
Unit 4 Viral replication; uncoating, assembly and release 6 Lectures	Bacteriophage: classification, morphology and ultra structure. One step growth curve (latent period, eclipse period, and burst of size.) Life cycle: lytic and lysogenic life cycle of bacteriophages. Brief account of M13, Mu, T4, Ø x174 and lambda phage. Uncoating, assembly and release	

Unit 5	Classification and nomenclature; effects of viruses on plants;		
Plant viruses: Infection	appearance of plants; histology, physiology and cytology of plants;		
and diseases of plants 7	common virus diseases of plants; paddy, cotton, tomato and		
Lectures	sugarcane; viruses of cyanobacteria, algae, fungi, life cycle; type		
	species of plant viruses like TMV, Cauliflower Mosaic Virus and		
	Potato Virus X; transmission of plant viruses with vectors (insects,		
	nematodes, fungi) and without vectors (contact, seed and pollens);		
	diagnostic techniques in seeds; seed stocks and diseased plants (seed		
	morphology, seedling symptomatology, indicator plants, serological		
	methods, histochemical tests and fluorescent microscopy);		
	prevention of crop loss due to virus infection – virus- free planting		
	material; vector control		
Unit 6	Classification and nomenclature of animal human viruses		
	epidemiology, lifecycle, pathogenicity, diagnosis, prevention and		
Animal viruses: treatment of RNA viruses Picorna, Ortho myxo, Par			
infections and diagnosis	and other arthropod viruses, Rhabdo, Rota, HIV and other Oncogenic		
7 Lectures	viruses; DNA viruses; Pox, Herpes, Adeno, SV 40; Hepatitis viruses.		
Unit 7	Viral vaccines (conventional vaccines, genetic recombinant vaccines		
x 7. x . x	used in national immunization programmes with examples, newer		
Viral vaccines and	generation vaccines including DNA vaccines with examples)		
antiviral agents	interferons and antiviral drugs.		
7 Lectures			

1. Reference Books 1. Virology; Renato Dulbecco and Harold S. Ginsberg

2. An Introduction to viruses, S. B. Biswas and Amita Biswas. Forth edition, Vikas Publishing House PVT LTD New Delhi.

	Course objective	Students Learning Outcomes
Fungal		Students should be able to:
Biology	The objectives of this course are to	Identify major categories of fungi
COURSE	introduce field of field biology with	and analyze their classification,
CODE:	special emphasis on fungal diversity,	diversity, and ubiquity
21MS1MB113	morphology, physiology and	Identify major categories of fungi,
L-T-P: 3-0-0	reproduction; their application to	demonstrate and evaluate
	industry and a human-host or plant-	interactions between hosts
Credits 2	fungal interactions.	(plant/human) and environment.

T T •4 T			
Unit I	Introduction to the course; characteristics of fungi		
Introduction and	Fungal life cycles, ecological role of fungi, and human-fungus		
classifications	interactions, Model organisms and genetics		
3 lectures			
Unit II	General overview		
Division or Phylum	Class Zygomycetes (Order Mucorales)		
Zygomycota	Fermented Foods etc		
04 lectures			
Unit III	Cultivation of mushrooms & other fungi Spore release and dispersal		
Division or Phylum	Poisonous and hallucinogenic mushrooms; Mycotoxins in the grain and		
Basidiomycota	other food products.		
(General	Class Urediniomycetes & Ustomycetes (Rusts and Smuts)		
overview) Class			
Basidiomycetes			
07lectures			
Unit IV	General overview		
Division or Phylum	Ergot & ergotism; Mycotoxins in Food		
Ascomycota	Alcoholic fermentations, cheeses, and fungal metabolites Physiology of Fungal Growth		
08 lectures	Bioremediation		
	Yeast-Model organism and expression system		
Unit V	Form Division or Form Phylum Deuteromycota: (General		
IMPERFECT	overview)		
FUNGI	Symbiotic and Parasitic relations Allergies and Fungal Diseases of		
	Animals & Humans Slime molds Zoosporic Fungi: Chytrids,		
FUNGUS-LIKE	Oomycetes, and others		
ORGANISMS			
7 lectures			

- 1. Introduction to Fungi. 3rd Edition (2007) Webster & Webster. Cambridge University Press.
- Bessette, A. E., Bessette, A. F., & Lewis, D. P. (2019). Mushrooms of the Gulf Coast States: A Field Guide to Texas, Louisiana, Mississippi, Alabama, and Florida. University of Texas Press.
- 3. https://fungalbiolbiotech.biomedcentral.com/articles
- 4. https://www.frontiersin.org/research-topics/9823/innovative-approaches-in-diagnosis-ofemergingre-emerging-infectious-diseases
- 5. https://www.frontiersin.org/research-topics/11600/fungal-genetics-in-plant-biomass-conversion
- 6. https://www.frontiersin.org/research-topics/13305/plant-pathogenic-fungi-molecular-systematics-genomics-and-evolution

General Microbiology and	Course Objectives	Students Learning
Bacteriology Lab	The objective of this	outcomes
COURSE CODE:		Students should be able to:
21MS7MB171	practical skills on basic	Isolate, characterize and
L-T-P: 0-0-4	microbiological techniques.	identify
		Common bacterial
		organisms
Credits: 2		Determine bacterial load of
		different samples
		 Perform antimicrobial
		sensitivity tests
		Preserve bacterial cultures.

- 1. To study construction and working of compound microscope and study of microbiology lab instruments
- 2. Sterilization, disinfection and safety in microbiological laboratory.
- 3. Preparation of media for cultivation of bacteria.
- 4. Isolation of bacteria in pure culture by streak plate method.
- 5. Pour plate technique and study of colony and growth characteristics of some common bacteria
- 6. Preparation of bacterial smear and Gram's staining.
- 7. Acid-fast staining for study and differentiation of acid-fast bacteria.
- 8. Enumeration of bacteria: serial dilution and standard plate count.
- 9. Antimicrobial sensitivity test and demonstration of drug resistance
- 10. Determination of Minimum Inhibitory Concentration (MIC)
- 11. Maintenance of stock cultures: slants, stabs and glycerol stock cultures
- 12. Determination of phenol co-efficient of antimicrobial agents.
- 13. Isolation and identification of bacteria from soil/water samples.
- 14. Study of bacterial growth kinetics.

- 1. Cappuccino, J. G., & Welsh, C. (2016). *Microbiology: a Laboratory Manual*. Benjamin-Cummings Publishing Company.
- 2. Collins, C. H., Lyne, P. M., Grange, J. M., & Falkinham III, J. (2004). *Collins and Lyne's Microbiological Methods* (8th ed.). Arnolds.
- 3. Benson, Harold J. (2007) *Microbiological Applications : Laboratory Manual in General Microbiology*, McGraw-Hill Higher Education
- 4. Tille, P. M., & Forbes, B. A. Bailey & Scott's Diagnostic Microbiology.

BIOCHEMISTRY	Course Objectives	Students Learning outcomes
LAB COURSE CODE: 21MS7BT171 L-T-P: 0-0-2 Credits: 1	 The Objective of the course is To provide training and skills for the handling and analysis of biomolecules. To acquaint the students with laboratory techniques related 	 After completion of Biochemistry lab, student will be able To understand the basic biochemistry laboratory practices and independently handle different instruments utilized ina
	to detection and estimation of primary biomolecules which are essential in an organism for life sustainability.	• To identify and quantify accurately different biochemical identities in a

- 1. Basic guidelines for safety measures to avoid hazards in biochemistry lab and preparing various stock solutions and working solutions.
- 2. To prepare buffer solution of varying pH by using Henderson-Hasselbalch equation and pH meter.
- 3. To identify and classify different sugars on the basis of qualitative methods.
- 4. To determine concentration of carbohydrates by Anthrone method: a quantitative approach.
- 5. To isolate the proteins from bacterial culture using differential centrifugation and their detection using qualitative methods.
- 6. To estimate concentration of proteins with Bradford's method.
- 7. To estimate concentration of proteins by Lowry's method.
- 8. To separate different bacterial proteins using SDS PAGE technique.
- 9. To study the enzyme activity (amylase enzyme) using DNS method.
- 10. To determine an unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer and validating the Beer- Lambert's Law.
- 11. To determine presence of lipid in a given sample through qualitative method.
- 12. To Estimate the Saponification value of oils.
- 13. To quantify the concentration of DNA using spectrophotometer.
- 14. To detect the presence of microorganism in milk using specific biochemical tests.

- 1) Irwin H. Segel "Biochemical Calculations", 2ed (2010) Wiley
- Andreas Hofmann & Samuel Clokie Wilson and Walker's "Principles and Techniques of Biochemistry and Molecular Biology" (2018) Cambridge university press

Molecular	Course objective	Students Learning outcomes
Biology Lab COURSE CODE:	The objective of this course is to familiarize	On successful completion of this course, student will be able to:
21MS7MB172 L-T-P: 0-0-4 Credits 1	the students with some basic and advanced techniques of molecular biology.	 Understand the fundamentals of procedure of isolation, quantification and visualization of various biomolecules from different cellular or tissue.
		 Interpret and conclude experimental results involving molecular biology

- 1. Introduction to molecular biology lab and facilities, Calculations of molarity and normality of the solutions
- 2. Preparation of Buffer Stocks (TBE, TAE, TE) and Buffers for gel electrophoresis
- 3. To perform agarose gel electrophoresis of DNA samples
- 4. Estimation of DNA quantity and quality by gel electrophoresis
- 5. To isolate genomic DNA from *E. coli* (DH5-α) using heat boiling method
- 6. To isolate *E. coli* (DH5-α) genomic DNA using phenol chloroform
- 7. Isolation of genomic DNA from human blood sample
- 8. Preparation of reagents and isolation plant genomic DNA using CTAB method
- 9. Quantification of DNA concentration and purity by spectrometric/nanodrop method
- 10. Introduction to Polymerase Chain Reaction and to amplify gene using genomic DNA of *E. coli*.
- 11. To separate serum and plasma proteins from human blood
- 12. To visualize human serum and plasma proteins using SDS-PAGE technique
- 13. To isolate RNA from bacterial cell and its quantification

Recommended Textbooks and References:

1. Green, M. R., & Sambrook, J. (2012). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Good Laboratory Practice	Course Objectives	Students Learning
and Bioinstrumentation Lab	The Objective of the course is	outcomes
COURSE CODE:	to provide training of good	Students should be able to:
21MS7MB173	laboratory practices and	■To understand basic
L-T-P: 0-0-2	various instrumentations used	guidelines, importance of
	in Biotech/Pharmaceutical	good laboratory practice,
	industry. This course covers	documentation and
Credits: 1	practical aspects of modern	conduct of non-clinical
	instrumentation used for	studies
	analysis in biological research	•To Understand basic
		principles and applications
		of bio-instruments
		•To develop necessary
		critical thinking skills in
		order to do data analysis
		and interpretation in
		relation to the research
		process

- 1. To introduce good lab practices, Lab safety and Bio hazard
- 2. Introduction to the OECD Principles of good laboratory practice. Overview and Purpose of GLP
- 3. Good Documentation practice and maintenance of lab note book
- 4. Quality control & Quality Assurance in laboratory
- 5. To determine an unknown protein concentration by plotting a standard graph of BSA using UV-Vis Spectrophotometer and validating the Beer- Lambert's Law.
- 6. Instrumentation and working principles of infra red (IR) spectroscopy using salt plates.
- 7. Chromatography (Ion exchange, Molecular Sieve, Affinity, Thin layer, GC)
- 8. Instrumentation and working principles of HPLC
- 9. Instrumentation and working principles Electron Microscopy
- 10. Principle and application Gel electrophoresis
- 11. Principle and application of lypholization
- 12. Instrumentation and working principles of mass spectroscopy
- 13. Determination of molar mass of simple compounds using mass spectroscopy.
- 14. MALDI-TOF instrumentation and analysis of serum proteins
- 15. To study the effect of chemical denaturants on protein stability using CD spectroscopy.
- 16. Principle and applications of Centrifugation and ultracentrifugation

- 1. Milton. A. Anderson (2002) GLP Essentials: a Concise Guide to Good Laboratory Practices
- 2. Sandy Weinberg (2007) Good Laboratory Practice Regulations
- 3. Nally, J. D. 6th edition. CRC Press (2006) GMP for Pharmaceuticals
- 4. <u>Andreas Hofmann</u> & <u>Samuel Clokie</u> Cambridge university press (2018) Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology

IInd SEMESTER (MBII)

	Course objective	Students Learning outcomes
Immunology and		0
Immunotechnology	The objectives of this course are	On successful completion of this
COURSE CODE:	to learn about structural features	course, student will be able to:
18MS1BT211	of components of immune	• Evaluate usefulness of
L-T-P: 3-0-0	system as well as their function.	immunology in different
	The major emphasis of this course will be on development of	• Identify proper research lab
Credits 3	immune system and mechanisms by which our body elicits	working in area of their own interests;
	immune response. This will be imperative for students as it will help them to predict about nature of immune response that develops against bacterial, viral or parasitic infection, and prove it by designing new experiments.	• Apply their knowledge and design immunological experiments to demonstrate innate, humoral or cytotoxic T lymphocyte responses and figure out kind of immune

Unit I	Historical perspectives, Cells and organs of the immune system, Types
Immunology	of immunity (innate and acquired immunity), Components of innate and
fundamental	acquired immunity, Antigens: mitogens Immunogenicity, antigenicity,
Concepts:	epitopes, haptens.
6 lectures	
Unit II	Immunoglobulins - basic structure, classes & subclasses of
Immune responses generated by B and	immunoglobulins, antigenic determinants, B-cell receptor, B cell maturation, activation and differentiation; generation of antibody diversity: T cell maturation activation and differentiation and T cell
T lymphocytes 8 lectures	diversity; T-cell maturation, activation and differentiation and T-cell receptors; functional T Cell subsets; cell-mediated immune responses, ADCC; cytokines: properties, receptors and therapeutic uses; antigen processing and presentation- endogenous antigens, exogenous antigens, non-peptide bacterial antigens and super-antigens; cell-cell co-operation, Hapten-carrier system,
Unit III	Precipitation, agglutination and complement mediated immune
Antigen-antibody	reactions; advanced immunological techniques: RIA, ELISA, Western
interactions	blotting, ELISPOT assay, immunofluorescence microscopy, flow
5 lectures	cytometry and FACS.
Unit IV	A short history of vaccination, Active and passive immunization; live,
Vaccinology	killed, attenuated, subunit vaccines; vaccine technology: role and
7 lectures	properties of adjuvants, recombinant DNA and protein based vaccines,
	plant-based vaccines, reverse vaccinology; peptide vaccines, conjugate vaccines; antibody genes and antibody engineering:chimeric, generation of monoclonal antibodies, hybrid monoclonal antibodies; catalytic antibodies and generation of immunoglobulin

Unit V	Autoimmunity: Types of autoimmune diseases (organ specific and	
Clinical	systemic), Mechanisms of autoimmunity, Hypersensitivity reactions:	
immunology	Type I, II, II and IV, hypersensitivity reactions, treatment of autoimmune	
8 Lectures	diseases; transplantation: immunological basis of graft rejection; clinical	
	transplantation and immunosuppressive therapy	
Unit VI		
Immune response to	Viral, bacterial, protozoan diseases, parasitic infections,	
infectious diseases	Immunodeficiency diseases: Primary and secondary immunodeficiency	
and tumor	diseases, Acquired immunodeficiency syndrome (AIDS)	
immunity		
4 Lectures		
Unit VII	Major histocompatibility complex genes and their role in autoimmune	
Immunogenetics	and infectious diseases, HLA typing. General organization and	
4 Lectures	inheritance of MHC, structure of MHC class I and II molecules, peptide	
	binding by MHC molecules, MHC and susceptibility to disease.	

- 1. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2006). Kuby Immunology. New York: W.H. Freeman.
- 2. Brostoff, J., Seaddin, J. K., Male, D., & Roitt, I. M. (2002). Clinical Immunology. London: Gower Medical Pub.
- 3. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's Immunobiology. New York: Garland Science.
- 4. Paul, W. E. (2012). Fundamental Immunology. New York: Raven Press.
- Goding, J. W. (1996). Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology, Biochemistry, and Immunology. London: Academic Press.
- 6. Parham, P. (2005). The Immune System. New York: Garland Science.

	Course objective	Students Learning outcomes
Enzymes &	The objectives of this course are	On successful completion of this
Bioprocess	to develop an understanding in	course, student will be able to:
Technology	students about the fundamental	• Describe the fundamentals and
COURSE CODE:	and important concepts of	importance of enzymes and its
21MS1MB211	enzymes and bioprocess	kinetics
L-T-P: 3-0-0	technology and its related applications, thus preparing them to meet the challenges of the new and emerging areas of	 Appreciate relevance of microorganisms from industrial context Analyze bacterial growth kinetics
Credits 3	and emerging areas of biotechnology industry.	 Analyze bacterial growth kinetics in batch/continuous/Fed-batch reactor and thermal death kinetics Give an account of bioreactor design and their applications Calculate yield and production rates, the need for oxygen and oxygen transfer in a biological production process, and also interpret data; Apply principles of various unit operations in designing and optimization of downstream processes Give an account of importance of enzymes and microbials in food processing and production of various bioproducts.

Unit I	Introduction to Enzymes; Classification; General properties; Kinetics;	
Enzymology	Reversible and irreversible inhibition; Coenzyme and cofactors;	
5 lectures	Isoenzymes	
Unit II	Introduction to fermentation; Isolation, screening, preservation and	
Basic Principles of	maintenance of industrially important microbes; Strain improvement	
Bioprocess		
Technology		
4 lectures		
Unit III Bioreactor	Microbial growth and Death Kinetics; Factors affecting microbial	
Design and	growth; Batch and Continuous Fermentation; Modifying Batch and	
Analysis	continuous Fermentation: Fed-batch, Chemostat with recycle,	
10 lectures	multistage chemostat systems; Cell and enzyme immobilization	
	Criteria for ideal fermenter; Configuration; Bioreactor designs-	
	mechanically agitated; Pneumatic and hydrodynamic fermenters.	
	Whole Cell Immobilized Fermenters; Stability of microbial reactors	
Unit IV	Fermentation media; Media formulation; Sterilization; Aeration,	
Upstream	agitation and heat transfer in bioprocess; Measurement and control of	
processing	bioprocess parameters; Scale up and scale down process	

6 lectures			
Unit V	Separation of insolubles: Filtration, Centrifugation, Sedimentation;		
Downstream	Cell disruption; Separation of solubles: Liquid-liquid extraction;		
processing and	Precipitation; chromatographic techniques; Reverse osmosis and ultra		
Product Recovery	and micro filtration; Final purification: Drying; Crystallization;		
7 Lectures	Storage and packaging; Effluent Treatment and its disposal		
Unit VI	Mechanism of enzyme function and reactions in process techniques;		
Applications of	enzymatic bioconversions <i>e.g.</i> starch and sugar conversion processes;		
Enzyme technology	high-fructose corn syrup; hydrolyzed protein etc. and their downstream		
in food processing 4	processing; baking by amylases, deoxygenation and desugaring by		
Lectures	glucoses oxidase, beer mashing and chill proofing; cheese making by		
	proteases and various other enzyme catalytic actions food processing		
Unit VII	Industrial Production of Bioproducts: Ethanol, Acids (Citric, acetic,		
Applications of	Lactic and gluconic), Antibiotics (Penicillin, streptomycin,		
microbial	tetracycline), Semi-synthetic antibiotics, Ethanol, Single Cell Protein		
technology in			
bioproduct			
production			
6 Lectures			

- 1. Berg, J.M., Tymoczko, J.L. and Stryer, L., "*Biochemistry*", 5th ed., W.H. Freeman and Company, New York, 2002
- 2. Nelson D.L., Cox M.M., "Lehninger Principles of Biochemistry", 5th ed., W.H. Freeman and Company, New York, 2008.
- 3. Pauline M. Doran, "Bioprocess Engineering Principles", 8th ed., Academic press, New York, 2003.
- 4. M.L. Shuler and F. Kargi, "Bioprocess Engineering--basic Concepts", 2nd Edn. Prenticehall Of India Pvt Ltd (2008).
- 5. Peter F. Stanbury, Stephen J. Hall & A. Whitaker, "Principles of Fermentation Technology", Â Elsevier India Pvt Ltd. (2007).
- Jackson AT., Bioprocess Engineering in Biotechnology, Prentice Hall, EngelwoodCliffs, 1991.
- 7. Illanes A, "Enzyme Biocatalysis", Springer Science, 2008.
- 8. Klaas Van't Riet, Johannes Tramper, "Basic Bioreactor Design", 2nd ed., Marcel Dekker, Inc., New York, 1991.
- 9. JE Bailey and DF Ollis, "Biochemical Engineering Fundamentals", 2nd ed., McGraw-Hill Book Company, New York, 1986.
- Mansi EMTEL, Bryle CFA. Fermentation Microbiology and Biotechnology, 2nd Edition, Taylor & Francis Ltd, UK, 2007.
- 11. Abhilasha S. Mathuriya, "Industrial Biochnology" 1st ed., Ane Books Pvt. Ltd., New Delhi, 2009.

Microbial Genetics and Physiology COURSE CODE: 21MS1MB212 L-T-P: 3-0-0 Credits 3	Course objective The objectives of this course are to take students through basics of genetics and physiology covering prokaryotic/phage genetics to yeast and higher eukaryotic domains. Students will be exposed to concepts of population genetics, quantitative genetics encompassing complex traits, genetics of evolution, microbial metabolism, energy generation, microbial communication and energetics.	 Students Learning Outcomes On successful completion of this course, student will be able to: Describe fundamental molecular principles of genetics. Describe the basics of genetic mapping. Understand the principles of Population genetics. Acquaint with energy generation and fermentation pathways. Acquaint with energetics of Chemolithotrophs, and microbial cross-talk
---	---	---

Unit I Genetics of bacteria, bacteriophages, and Yeast 10 lectures	Concept of a gene in pre-DNA era; mapping of genes in bacterial and phage chromosomes by classical genetic crosses; fine structure analysis of a gene; genetic complementation and other genetic crosses using phenotypic markers; Yeast mating type switch; dominant and recessive genes/mutations, complementation groups, transposon mutagenesis, Mapping QTLs
Unit II Drosophila genetics as a model of higher eukaryotes 5 lectures	Analyses of autosomal and sex linkages, screening of mutations based on phenotypes and mapping the same, hypomorphy, genetic mosaics
Unit III Population genetics and genetics of evolution 7 lectures	Introduction to the elements of population genetics: genetic variation, genetic drift, neutral evolution; mutation selection, Fishers theorem, Hardy Weinberg equilibrium, in-breeding depression & mating systems; population bottlenecks
Unit IV Microbial Physiology 10 lectures	Metabolic genetic regulation, Energy, oxidation-reduction vs. fermentation, Microbial growth: Growth cycle, continuous culture, factors affecting growth. Regulatory systems during aerobic- anaerobic shifts. Osmotic control of gene expression, SOS response and Heat shock response, Phosphate starvation
Unit V Energetics of autotrophs and chemolithotrophs 10 Lectures	pH Homeostasis, specific transport systems, Fermentation pathways in specific group of microorganisms: Lactic acid, propionic acid, butyric acid producing fermentation; Characteristics and Metabolism of autotrophs; Biosynthesis of Fatty acids; Degradation of Lipids, Endospore formation (differentiation). Bacterial Quorum sensing

1. Hartl, D. L., & Jones, E. W. Genetics: Principles and Analysis. Sudbury, MA: Jones and Bartlett.

- 2. Pierce, B. A. Genetics: a Conceptual Approach. New York: W.H. Freeman.
- 3. Tamarin, R. H., & Leavitt, R. W. Principles of Genetics. Dubuque, IA: Wm. C. Brown.
- 4. Smith, J. M. Evolutionary Genetics. Oxford: Oxford University Press.

5. Klug, W.S., Cummings, R., Spencer, C. A., & Michael A. P., Concepts of Genetics. Pearson Publications

6. Albert G. M., & John W. F., Microbial Physiology, Wiley-Liss, A John Wiley& Sons, Inc. Publications.

- 7. Trudy T. A, Endang P. et al, Microbial Physiology and Genetics. Intelliz Press,
- 8. Davis K. Microbial Physiology and Genetics. Apple Academic Press.

Recombinant-DNA	Course objective	Students Learning outcomes
Technology		
COURSE CODE:	The objectives of this course are to	Given the impact of recombinant
18MS1BT313	teach students with various	DNA technology in modern
L-T-P: 3-0-0	approaches to conducting	society, the students should be
	recombinant DNA technology and	endowed with strong theoretical
	their applications in biological	knowledge of this technology. In
	research as well as industries.	conjunction with the practical in
Credit 3		molecular biology & genetic
		engineering, the students should
		be able to take up biological
		research as well as placement in
		the relevant biotech industry.

Unit I	Recombinant DNA technology: gene cloning, Genetic engineering, -		
Introduction and	concept and basic steps - rDNA Glossary, history of rDNA-		
tools for rDNA	recombinant Insulin		
technology			
3 lectures			
Unit II	Restriction Endonucleases, DNA Ligation Enzymes and, DNA		
DNA modifying	Modifying Enzymes: Nucleases, Kinases, phosphatases, and Reverse		
enzymes and	transcriptase other tools used for DNA Modification		
cloning techniques			
06 lectures			
Unit III	Plasmid Vectors, Vectors based on Lambda Bacteriophage, Cosmids,		
Cloning Vectors	M13 Vectors, Vectors for Cloning Large DNA Molecules Principles		
and Expression	for maximizing gene expression, expression vectors; pMal; GST; pET-		
Vectors	based vectors; Protein purification; His-tag; GST-tag; MBP-tag etc.;		
	Inclusion bodies; methodologies to reduce formation of inclusion		
12 lectures	bodies; mammalian expression and replicating vectors; Baculovirus		
	and Pichia vectors system, plant-based vectors, Ti and Ri as vectors,		
	yeast vectors, shuttle vectors		
Unit IV	Genomic library, cDNA library, Growing & Storing Libraries,		
Construction	construction of microarrays, cDNA Cloning (5'&3' RACE) Basic		
libraries and	DNA Sequencing, Whole genome sequencing, Next generation		
sequencing	sequencing technologies		
technologies			
10 lectures			
Unit V	Microbial, Yeast Saccharomyces Cerevisiae as heterologous protein		
Gene Expression in	expression platforms, Protein expression in insect Cells and		
Microbial and	Mammalian Cells; protein-protein interactions using yeast two-hybrid		
Eukaryotic Systems	system;		
06 lectures			
Unit VI	Gene transfer techniques, Application of Genetically Engineered		
Genetic	Strains of microbes; Biosafety Issues related to recombinant DNA		
Manipulation Of	Technology Genetic Manipulation of microorganisms		
microorganisms			
05 lectures			
L			

1. Old, R. W., Primrose, S. B., & Twyman, R. M. (2001). *Principles of Gene Manipulation: an Introduction to Genetic Engineering*. Oxford: Blackwell Scientific Publications.

2. Green, M. R., & Sambrook, J. (2012). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

- 3. Brown, T. A. (2006). Genomes (3rd ed.). New York: Garland Science Pub.
- 4. Selected papers from scientific journals, particularly Nature & Science.
- 5. Technical Literature from Stratagene, Promega, Novagen, New England Biolab etc.

Bioinformatics	Course objective	Students Learning outcomes
MBII	The objectives of this course	On successful completion of this
COURSE CODE:	are to provide theory and	course, student will be able to:
20MS1BT213	practical experience of the use	 Develop an understanding of
L-T-P: 2-0-0	of common computational tools and databases which facilitate	basic theory of these computational tools;
Credits 2	investigation of molecular biology and evolution-related concepts.	 Gain working knowledge of these computational tools and methods;
		 Prediction of structure from sequence and subsequently testing the accuracy of predicted structures
		 Appreciate their relevance for investigating specific contemporary biological questions;
		 Critically analyse and interpret results of their study.

Unit I	Bioinformatics basics: Protein and nucleic acid databases; Structural		
Introduction	databases; search tools: biological background for sequence analysis;		
4 lectures	searching of databases similar sequence; NCBI; publicly available tools;		
Unit II	resources at EBI; sequence, sequence similarity, homology, alignment.		
	Different scoring models, Substitution matrices (PAM and BLOSUM),		
Pairwise Sequence	Pairwise Alignment: Concept of Global and Local Alignment, Dot		
Alignment	matrix method, Dynamic programming (Needleman-Wunsch algorithm,		
6 lectures	Smith-Waterman algorithm, Choosing of best scoring matrix, gap		
	penalties, Significance of score, FASTA and BLAST algorithms.		
Unit III	Multiple Sequence Alignment methods (MSA), Scoring of a MSA,		
Multiple Sequence	Progressive (CLUSTALW and PILEUP), Iterative (Genetic) and Hidden		
alignment	Markov Model (HMM) based methods of MSA, Profile and BLOCK		
6 lectures	level analysis, Motif and Pattern searching and primer designing.		
Unit IV	Molecular evolution basics, phylogenetic tree and terminology,		
Phylogenetic	different methods of Phylogenetic tree prediction: maximum parsimony,		
Analysis	distance (UPGMA, NJ), maximum likelihood methods, Phylogenetic		
4 lectures	and evolutionary analysis.		
Unit V Structural	Protein structure prediction: protein folding and model generation;		
Alignment Tools	secondary structure prediction; analyzing secondary structures;		
and Protein	homology modelling: potential applications, description, methodology,		
Tertiary Structure	homologous sequence identification; align structures, align model		
Prediction	sequence; construction of variable and conserved regions; structure		
5 Lectures	aided sequence techniques of structure prediction; structural profiles.		
Unit VI	terminology of RNA secondary structure, inferring structure by		
RNA Structure	comparative sequence analysis, RNA secondary structure prediction,		
Analysis	Basic algorithms and methods of RNA folding.		

3	Lectures

Text Books:

- 1. D.W. Mount *Bioinformatics: Genome and Sequence Analysis*: (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 2. Ian Korf, Mark & Josaph: BLAST, Oreilly Publisher, 2003
- 3. R. Durbin, S. Eddy, A. Krogh and G. Mitchison, *Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.* Cambridge University Press.
- 4. J. Pevsner (2002) Bioinformatics and Functional Genomics; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 5. A.D. Baxevanis & B.F.F. Oulette *Bioinformatics A practical guide to the Analysis of Genes and Proteins*,2002, Willey International publishers.
- 6. M.J. Bishop and C.J. Rawlings (editors), *DNA and Protein Sequence Analysis---A Practical Approach* IRL Press at Oxford University Press, ISBN 0 19 963464 7 (Pbk)
- 7. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.

Reference Books:

- 1. J. Setubal and J. Meidanis (1997) *Introduction to Computational Molecular Biology*, PWS Publishing Co.
- 2. J. Pevsner (2002) Bioinformatics and Functional Genomics; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Immunology and Immunotechnology Lab	Course Objectives	Students Learning outcomes Students should be able
COURSE CODE: 18MS7BT211 L-T-P: 0-0-2	The objectives of this lab course are to develop an understanding about practical aspects of components of immune system as	 Evaluate usefulness of immunology in different pharmaceutical companies; Identify proper research lab
Credits: 1	well as their function. Basic as well as advanced methods will be taught to detect different antigen and antibody interactions, isolation of different lymphocyte cells <i>etc.</i> and how they can be used in respective research work.	 Identify proper research fab working in area of their own interests; Apply their knowledge and design immunological experiments to demonstrate innate, humoral or cytotoxic T lymphocyte responses and figure out kind of immune responses in setting of infection. (viral or bacterial) by looking at cytokine profile.

- 1. To perform blood typing by agglutination.
- 2. To antigen detection by Dot ELISA method.
- 3. To quantify the concentration of unknown antigen by radial Immunodiffusion (RID).
- 4. To perform ouchterlony antigen for antibody titration.
- 5. To quantify the concentration of unknown antigen by rocket Immunoelectrophoresis.
- 6. To characterized the given antibody by Immunoelectrophoresis.
- 7. To quantify the amount of precipitation by Quantitative precipitation assay.
- 8. To determine the concentration of antigen by sandwich ELISA method.
- 9. To separate mononuclear cells from peripheral blood
- 10. To isolate the lymphocyte from whole blood by density gradient centrifugation method
- 11. To estimate the antibody titer using haemagglutination assay.
- 12. To determine Total Leukocytes Count (TLC) of the given blood sample.
- 13. To determine the relative number of white cells in the blood by performing differential cell counts
- 14. To perform Erythrocyte Rosette-forming Cell Test, ERFC

- 1. Lab Manual of the Department of Biotechnology and Bioinformatics, JUIT, Waknaghat.
- 2. Hay FC and Westwood OMR (2003) Practical Immunology, 4th Ed., Blackwell Publishing. 3.
- 3. Virtual Lab. (http://vlab.amrita.edu/?sub=3&brch=70),

https://vlab.amrita.edu/?sub=3&brch=69)

Enzymes & Bioprocess	Course Objectives	Students Learning outcomes
Technology Lab	The objective of the course is	Students hearing outcomes
COURSE CODE:	to provide hands on training to	• To investigate, design and
20MS7MB271	students in bioprocess	conduct experiments,
L-T-P: 0-0-2	technology with the usage of microbials and enzymes. This course covers practical	analyze and interpret data, and apply the laboratory skills to solve complex
Credits: 1	aspects of upstream processing and downstream unit operations with respect to current requirements of the manufacturing industries.	 bioprocess technology problems; To learn how to operate bench scale bioreactor; To learn how to determine various Monod's Kinetics parameter; To learn how to determine various Michaelis Menten Kinetics parameter; To learn how to recover the various bioproduct after their production; To learn how to characterize the products after their recovery

- 1. Describe the various parts of the bench-top fermenter (bioreactor) along with their functions.
- 2. Batch fermentation using shake-flask for ethanol production by Saccharomyces cerevisae.
- 3. To study growth kinetics parameters of *E. coli*.
 - a) Specific growth rate (μ) h⁻¹
 - b) Doubling time (t_d) h
 - c) Maximum specific growth rate $(\mu_m) h^{-1}$
 - d) Saturation constant (Ks) gm/l
- 4. Setting up of a fermentation process for the production of extracellular industrial enzyme from the selected microbe of industrial importance
- 5. Determination of Growth yield coefficient $(Y_{x/s})$ and Productivity of biomass after setting of a fermentation

- 6. Downstream processing of the industrial enzyme produced by the fermentation process.
 - a) Clarification
 - b) Yield estimation
 - c) Concentration using salt-induced precipitation
 - d) Dialysis
 - e) Purity check through SDS-PAGE and specific activity determination
- 7. Disruption of yeast cells using sonication to recover intracellular Invertase enzyme
- 8. Determination of protein and enzyme content in the cell lysate after the cell disruption
- 9. Determination of Michaelis Menten's kinetics parameters of purified amylase enzyme
- 10. Preparation of Immobilized yeast cells in calcium alginate beads
- 11. Characterization of immobilized yeast cells in terms of activity and stability
- 12. Preparation of Immobilized enzyme in calcium alginate beads
- 13. Characterization of immobilized enzyme in terms of activity and stability

- 1) Lab Manual of the Department of Biotechnology and Bioinformatics, JUIT, Waknaghat.
- 2) M.L. Shuler and F. Kargi, "Bioprocess Engineering--basic Concepts", 2nd Edn. Prentice-hall Of India Pvt Ltd (2008).
- Keith Wilson, John Walker, "Principles and Techniques of Biochemistry and Molecular Biology, 7th ed., Cambridge University Press, Singapore, 2010.
- 4) Raja Ghosh, "Principles of Bioseparation Engineering", World Scientific Publishing Co. Pte. Ltd., Singapore, 2006.
- 5) Pauline M. Doran, "Bioprocess Engineering Principles", 8th ed., Academic press, New York, 2003.
- 6) Peter F. Stanbury, Stephen J. Hall & A. Whitaker, "Principles of Fermentation Technology", Â Elsevier India Pvt Ltd. (2007).
- 7) Berg, J.M., Tymoczko, J.L. and Stryer, L., "*Biochemistry*", 5th ed., W.H. Freeman and Company, New York, 2002
- Nelson D.L., Cox M.M., "Lehninger Principles of Biochemistry", 5th ed., W.H. Freeman and Company, New York, 2008.
- 9) Nicholas C. Price and Lewis Stevens, "Fundamental of Enzymology", Oxford University Press, Oxford. ISBN: 9780198502296.
- Sawney S.K., Singh R. "Introductory Practical Biochemistry", Narosa Publisher, 2000. ISBN 9788173193026.

Bioinformatics	Course Objectives	Students Learning outcomes
MBII Lab	The objectives of this course are to	Students should be able
COURSE CODE:	provide practical experience of the	Understand the use of common
18MS7BI214	use of common computational tools	bioinformatics resources
L-T-P: 0-0-2	and databases which facilitate	(NCBI)
	investigation of molecular biology	 Understand various databases
	and evolution-related concepts.	and tools in NCBI (PubMed,
Credits: 1	L L	Nucleotide, gene, proteins,
		BLAST)
		 Understand various databases
		and tools in Expasy (Swissprot,
		PROSITE)
		 Hands-on of pairwise sequence
		alignment tools-global and local
		 Hands-on of multiple sequence
		alignment tools
		 Developing three-dimensional
		model of a protein structure
		■ Hands-on of phylogenetic
		analysis tools and visualization

- 1. Retrieval of literature and biological sequences from PubMed and NCBI.
- 2. BLAST program for comparing primary biological sequence information.
- 3. Protein resources: Use of ExPASy for sequence retrieval and analysis.
- 4. Use of EMBOSS tools for sequence analysis: Pairwise Sequence Alignment.
- 5. Use of Clustal and other tools (MAFFT, MUSCLE) for Multiple Sequence Alignment (MSA).
- 6. Use of PDB structural database and structure visualization using Pymol, Rasmol, and Discovery Studio.
- 7. Use of gene prediction methods (GRAIL, Genscan, Glimmer).
- 8. Phylogenetic analysis of protein and nucleotide sequences.
- 9. Secondary structure prediction using protein sequence.
- 10. Use of different protein structure prediction databases (SCOP & CATH).
- 11. Homology modelling of proteins in MODELLER.
- 12. Use of various primer designing and restriction site prediction tools.
- 13. Prediction of RNA secondary structure.
- 14. Use of tools for mutation and analysis of the energy minimization of protein structures.

Text Books:

- 1. D.W. Mount *Bioinformatics: Genome and Sequence Analysis*: (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 2. Ian Korf, Mark & Josaph: *BLAST*, Oreilly Publisher, 2003
- 3. R. Durbin, S. Eddy, A. Krogh and G. Mitchison, *Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids*. Cambridge University Press.
- 4. J. Pevsner (2002) Bioinformatics and Functional Genomics; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 5. A.D. Baxevanis & B.F.F. Oulette *Bioinformatics A practical guide to the Analysis of Genes and Proteins*,2002, Willey International publishers.
- 6. M.J. Bishop and C.J. Rawlings (editors), *DNA and Protein Sequence Analysis---A Practical Approach* IRL Press at Oxford University Press, ISBN 0 19 963464 7 (Pbk)
- 7. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.
- 8. J. Pevsner (2002) Bioinformatics and Functional Genomics; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Recombinant DNA Technology Lab COURSE CODE: 18MS7BT373 L-T-P: 0-0-4	Course Objectives The objectives of this course are to provide students with experimental knowledge and hands-on skills of methods and techniques for recombinant DNA technology and molecular cloning.	Students Learning outcomes Students should be able to gain hands-on experience in recombinant DNA technology techniques of gene cloning, protein expression. This experience would enable them to begin a
Credits: 2		career in industry that engages in genetic engineering as well as in research laboratories conducting fundamental research.

- 1. Preparation of stock buffers (TBE, TAE, TE) and Agarose gel electrophoresis
- 2. Plasmid DNA isolation and DNA quantitation
- 3. Extraction of DNA from gel
- 4. In vitro amplification of DNA fragment by Polymerase Chain Reaction
- 5. Designing of Primers and PCR cycle for given DNA sequence and analysis by Gradient PCR
- 6. Restriction Enzyme digestion of plasmid DNA (Blunt & Cohesive)
- 7. Vector and Insert Ligation (Using T₄ DNA ligase)
- 8. Preparation of competent cells by CaCl₂ treatment
- 9. Transformation of *E. coli* with standard plasmids, Calculation of transformation efficiency
- 10. Electroporation of plasmid DNA into mycobacterial cells
- 11. Confirmation of the insert by Colony PCR and Restriction mapping
- 12. Expression of recombinant protein, concept of soluble proteins and inclusion body formation in *E. coli*
- 13. SDS-PAGE analysis of proteins
- 14. Plating of Bacteriophage

Recommended Textbooks and References:

1. Green, M. R., & Sambrook, J. (2012). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.